• Title/Summary/Keyword: luciferase gene

Search Result 322, Processing Time 0.037 seconds

MicroRNA-217 Functions as a Tumour Suppressor Gene and Correlates with Cell Resistance to Cisplatin in Lung Cancer

  • Guo, Junhua;Feng, Zhijun;Huang, Zhi'ang;Wang, Hongyan;Lu, Wujie
    • Molecules and Cells
    • /
    • v.37 no.9
    • /
    • pp.664-671
    • /
    • 2014
  • MiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin. The expression of miR-217 was detected in 100 patients by real-time PCR. The effects of miR-217 overexpression on the proliferation, apoptosis, migration and invasion of SPC-A-1 and A549 cells were investigated. The target gene of miR-217 was predicted by Targetscan online software, screened by dual luciferase reporter gene assay and demonstrated by Western blot. Finally, the effects of miR-217 up-regulation on the sensitivity of A549 cells to cisplatin were determined. The expression of miR-217 was significantly lower in lung cancer tissues than in noncancerous tissues (p < 0.001). The overexpression of miR-217 significantly inhibited the proliferation, migration and invasion as well as promoted the apoptosis of lung cancer cells by targeting KRAS. The up-regulation of miR-217 enhanced the sensitivity of SPC-A-1 and A549 cells to cisplatin. In conclusion, miR-217 suppresses tumour development in lung cancer by targeting KRAS and enhances cell sensitivity to cisplatin. Our results encourage researchers to use cisplatin in combination with miR-217 to treat lung cancer. This regime might lead to low-dose cisplatin application and cisplatin side-effect reduction.

Inhibition of TNF-α-mediated NF-κB Transcriptional Activity in HepG2 Cells by Dammarane-type Saponins from Panax ginseng Leaves

  • Song, Seok-Bean;Tung, Nguyen Huu;Quang, Tran Hong;Ngan, Nguyen Thi Thanh;Kim, Kyoon-Eon;Kim, Young-Ho
    • Journal of Ginseng Research
    • /
    • v.36 no.2
    • /
    • pp.146-152
    • /
    • 2012
  • Panax ginseng (PG) is a globally utilized medicinal herb. The medicinal effects of PG are primarily attributable to ginsenosides located in the root and leaf. The leaves of PG are known to be rich in various bioactive ginsenosides, and the therapeutic effects of ginseng extract and ginsenosides have been associated with immunomodulatory and anti-inflammatory activities. We examined the effect of PG leaf extract and the isolated ginsenosides, on nuclear factor (NF)-${\kappa}B$transcriptional activity and target gene expression by applying a luciferase assay and reverse transcription polymerase chain reaction in tumor necrosis factor (TNF)-${\alpha}$-treated hepatocarcinoma HepG2 cells. Air-dried PG leaf extract inhibited TNF-${\alpha}$-induced NF-${\kappa}B$transcription activity and NF-${\kappa}B$-dependent cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) gene expression more efficiently than the steamed extract. Of the 10 ginsenosides isolated from PG leaves, Rd and Km most significantly inhibited activity in a dose-dependent manner, with $IC_{50}$ values of $12.05{\pm}0.82$ and $8.84{\pm}0.99\;{\mu}M$, respectively. Furthermore, the ginsenosides Rd and Km inhibited the TNF-${\alpha}$-induced expression levels of the COX-2 and iNOS gene in HepG2 cells. Air-dried leaf extracts and their chemical components, ginsenoside Rd and Km, are involved in the suppression of TNF-${\alpha}$-induced NF-${\kappa}B$ activation and NF-${\kappa}B$-dependent iNOS and COX-2 gene expression. Consequently, air-dried leaf extract from PG, and the purified ginsenosides, have therapeutic potential as anti-inflammatory.

DNase I Hypersensitive Site 8 as an Enhancer is Mapped in the Upstream Vicinity of the Crlz1 Promoter (Crlz1 promoter의 상위에 인접한 DNase I hypersensitive site 8의 enhancer 기능)

  • Choi, Seong-Young;Kang, Chang-Joong
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1201-1206
    • /
    • 2012
  • The Crlz1 gene is known to be expressed specifically in the pre-B cell stage during B-cell development. With regards to the specific expression of the pre-B cell stage of the Crlz1 gene, we have previously identified three pre-B cell-specific DNase I hypersensitive sites (HSS), which are named HSS8, 9, and 10, in the upstream vicinity of this gene. In this paper, we report that HSS8 increases further the strong Crlz1 promoter activity driven by HSS9/10 and, therefore, acts as its enhancer. Furthermore, HSS8 has been finely mapped between -1055 and -1159 from the transcription start site of the Crlz1 gene.

Ricinus communis extract inhibits the adipocyte differentiation through activating the Wnt/β-catenin signaling pathway

  • Kim, Bora;Kim, Hyun-Soo
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.524-528
    • /
    • 2017
  • Ricinus communis, belongs to the family Euphorbiaceae, has been known as medicinal plants for treatment of inflammation, tumors, antidiabetic, hepatoprotective and laxative. Compared to many pharmacological studies, the effect of R. communis extract on regulating adipogenesis as therapeutic drug for treating obesity has not been reported. R. communis extract (RCE) was investigated to determine its effects on the adipogenesis by monitoring the status of $Wnt/{\beta}-catenin$ signaling and factors involving the differentiation of adipocytes. The differentiation of 3T3-L1 cells monitored by Oil Red O staining was inhibited in concentration dependent manner by RCE. The luciferase activity of HEK 293-TOP cells containing pTOPFlash with Tcf4 response element-luciferase gene was increased approximately 2-folds by the treatment of RCE at concentrations of $100{\mu}g/mL$ compared to the control. Activation of the $Wnt/{\beta}-catenin$ pathway by RCE was further confirmed by immunocytochemical analysis which shows an increment of nuclear localization of ${\beta}-catenin$. In addition, safety of RCE was verified through performing neural stem cell morphology assay. Among the identified flavonoids in RCE, isoquercitrin was the most abundant. Therefore, these results indicate that the adipocyte differentiation was significantly reduced by isoquercitrin in R. communis. In this study, RCE suppresses the adipogenesis of 3T3-L1 cells via the activation of $Wnt/{\beta}-catenin$ signaling.

Transcriptional Regulation of the Methuselah Gene by Dorsal Protein in Drosophila melanogaster

  • Kim, Hyukmin;Kim, Jinsu;Lee, Yoonsoo;Yang, Jaeyeon;Han, Kyuhyung
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.261-268
    • /
    • 2006
  • The Drosophila methuselah (mth) mutant has an approximately 35 percent increase in average lifespan, and enhanced resistance to various forms of stress, including starvation, high temperature, and dietary paraquat. To examine the transcriptional regulation of mth, we used luciferase assays employing Drosophila S2 cells. Two positive control elements were found at -542 ~ -272 (PE1) and +28 ~ +217 (PE2), where putative binding sites for transcription factors including Dorsal (Dl) were identified. Cotransfection of a Dl expression plasmid with a mth-luciferase reporter plasmid resulted in decreased reporter activity. PE1 and PE2, the minimal elements for strong promoter activity, were required for maximal repression by Dl protein. The N-terminal Rel homology domain (RHD) of Dl was not sufficient for repression of mth. We demonstrated by chromatin affinity precipitation (ChAP) assays in S2 cells that Dl bound to the putative PE1 binding site. Unexpectedly, semi-quantitative RT-PCR analysis revealed that the level of mth transcripts was reduced in dl flies. However, the in vivo result support the view that mth expression is regulated by dl, since it is well known that Dl functions as both a transcriptional activator and repressor depending on what other transcription factors are present. These findings suggest that both innate immunity and resistance to stress are controlled by Dl protein.

Induction of Anticarcinogenic Enzymes by Dichloromethane-soluble Fraction of Physalis alkekengi var. francheti Hort. in Mouse Hepatoma Cells

  • Seo, JiYeon;Kim, Hyo Jung;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.119-124
    • /
    • 2014
  • Physalis alkekengi var. francheti Hort. is known as an insecticide and traditional remedy for liver related diseases. Therefore, this study investigated the chemopreventive effects of extracts and several solvent fractions (n-hexane, dichloromethane, n-butanol, water) of Physalis alkekengi var. francheti Hort. First, their cytotoxicity and NQO1 activity were measured using an MTT assay, plus a quinone reductase [NAD(P)H dehydrogenase (quinone); NAD(P)H: (quinone acceptor) oxidoreductase, EC 1.6.99.2]-inducing activity assay was performed using cultured murine hepatoma cells (Hepa1c1c7) and its mutant cells(BpRc1). The reduction of electrophilic quinones by NQO1 is an important detoxification pathway and major mechanism of chemoprevention. When compared with the other solvent soluble fractions with different polarities, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. showed a higher NQO1-inducing activity that was also dose-dependent. Moreover, the dichloromethane fraction of Physalis alkekengi var. francheti Hort. induced ARE-luciferase activities in HepG2-C8 cells that were generated by transfecting the ARE-luciferase gene construct, suggesting the Nrf2-ARE-mediated induction of anti-oxidative enzymes. In conclusion, the dichloromethane-soluble fraction of Physalis alkekengi var. francheti Hort. showed a relatively strong induction of detoxifying enzymes, thereby meriting further study to identify the active components and evaluate their potential as cancer preventive agents.

MiR-24 Simultaneously Regulates Both Oxytocin and Vasopressin (바소프레신과 옥시토신을 동시에 조절 마이크로RNA, miR-24)

  • Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.118-122
    • /
    • 2019
  • Oxytocin (Oxt) and vasopressin (Avp) are mainly synthesized in neuronal cells of the hypothalamus and are released from the posterior pituitary. The structure and sequences of Oxt and Avp genes imply that they are closely related and that they are the result of a duplication event during evolution. A previous study suggested that a small regulatory microRNA (miRNA), miR-24, regulated Oxt after binding. However, it is not clear whether this miRNA can modulate Avp simultaneously. The aim of the present study was to investigate putative targeting miRNAs of Avp, including miR-24. Targeted candidate miRNA oligonucleotides were transfected into COS-7 cells to elucidate the binding activity of miRNAs and Avp using dual-luciferase assays. The luciferase assay showed that only miR-24 displayed elevated binding activity with Avp as compared to a control and other candidate miRNAs. Transfection with seed mutants of Avp and miR-24 inhibitors clearly showed that miR-24 can directly bind to the Avp gene. These results provide new insight into the regulatory mechanism of neurohypophysial hormones by a single miRNA.

In vitro and in vivo Transient Expression in Insect Cells Mediated by the Cationic Liposome DDAB/DOPE

  • Xiao, Qing-Li;Zhou, Ya-Jing;Zhang, Zhi-Fang;He, Jia-Lu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • Cationic liposomes complexed with DNA have been extensively utilized for the delivery of reporter or therapeutic genes both in culture and in vivo. We investigated and determined the optimum conditions of a cationic liposome, composed of dimethyldioctadecy-lammonium bromide (DDAB) and dioleoyl phosphati-dylethanolamine UOPE), mediated a reporter plasmid expressing luciferase into insect cell lines (Sf-21 and Bm-N) and silkworm larvae. Together the data demonstrated that Bombyx mori nuclear polyhedrosis virus (BmNPV) genomic DNA (128 kb) was successfully transfected into Bm-5 cells using this liposome. These results suggest that DDAB/DOPE liposome will be useful as delivery agents for gene transfer to insect cells both in vitro and in vivo.

The Production of mutant protein by a transcription-based mechanism and in vivo technique for determining transcriptional mutagenesis

  • You, Ho-Jin
    • Proceedings of the PSK Conference
    • /
    • 2001.04a
    • /
    • pp.48-55
    • /
    • 2001
  • When an elongating RNA polymerase encounters DNA damage on the template strand of a transcribed gene it can either be arrested by or be transcribed through the lesion. Lesions that arrest RNA polymerases are thought to be subject to transcription-coupled repair, whereas that damage that is bypassed can cause miscoding, resulting in mutations in the transcript (transcriptional mutagenesis). We have developed a technique using a plasmid-based luciferase reporter assay to determine the extent to which a particular type of DNA base modification is capable of causing transcriptional mutagenesis in vivo. The system uses Escherichia coli strains with different DNA repair backgrounds and is designed to detect phenotypic changes caused by transcriptional mutageneis under nongrowth conditions. In addition, this method is capable of indicating the extent to which a particular DNA repair enzyme (or pathway) suppresses the occurrence of transcriptional mutagenesis. Thus, this technique provides a tool with which the effects of various genes on non-replication-dependent pathways resulting in the generation of mutant proteins can be gauged.

  • PDF