• Title/Summary/Keyword: lubrication seal

Search Result 73, Processing Time 0.024 seconds

on Contact Behaviour Characters of High pressure Wearing using Finite Element Analysis (고압용 웨어링의 접촉거동 특성에 대한 유한요소 해석)

  • 최동열;고영배;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.356-363
    • /
    • 2001
  • Piston seal is a device designed to prevent leakage in split connecctions or between relatively moving part. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of Wearing by finite element analysis to understand Contact Behaviour Characters.

  • PDF

A Study on Design Parameters to Improve Load Capacity of Spiral Grooved Thrust Bearing (스파이럴 그루브 형상의 스러스트 베어링의 부하용량 향상을 위한 설계 변수에 대한 연구)

  • 강지훈;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.257-262
    • /
    • 2001
  • A numerical analysis is undertaken to show tile influence of bearing design parameters on tile load capacity of air lubricated spiral grooved thrust bearing. The governing equation derived from the mass balance is solved by the finite difference method. Optimal values for various design parameters are obtained to maximize the load capacity. The design parameters are the groove angle, the groove width ratio, the groove height ratio, arid the seal ratio.

  • PDF

A Study on Ferro Fluid Dynamic Bearing Spindel Characteristics by High Frequency Vibration Ssystem

  • Miwa, M.;Harita, H.;Nishigami, T.;Kaneko, R.;Unozawa, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.283-284
    • /
    • 2002
  • Ball bearings (BB) are generally used in spindle of‘ disk drives at present, but they have been known that BB generate high frequency vibration. Fluid dynamic bearings (FDB) having high-rotational accuracy and small vibration characteristics have been developed as next generation spindles. Especially. a ferro fluid bearing (FFB) spindle has the advantage to prevent leakage and dispersion of lubricating oil using a ferro seal. In this study, we measured damping characteristics and frequency characteristics of these bearing spindles using a high-frequency vibration base. High frequency excitation was added to these bearing spindles mounted on the vibration base, and we proved that FFB and FDB spindles have effective damping.

  • PDF

Computer Simulation on Insulation Characteristics of Composite Material O-rings (복합소재 O-링 접합계면의 단열특성에 관한 컴퓨터 시뮬레이션)

  • Kim, Chung-Kyun;Kim, Sung-Won;Cho, Seung-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.291-295
    • /
    • 2002
  • O-ring seal is usual component part in various mechanical apparatus for sealing that makes efficient performance of the equipments. The sealing performance of O-ring is affected in environments of the O-rings, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, a pressurized, compressed elastomeric bi-polymer O-ring inserted into a rectangular groove is analyzed numerically using the MARC finite element program. The calculated FEM results showed that bi-polymer O-ring that is manufactured by NBR for an inner and FFKM for an outer ring shows a low temperature distribution among various bi-polymer O-ring models. But, the normal contact stress between the flange and upper part of the O-ring is small compared to other bi-polymer model.

  • PDF

The Study on the Mechanism for Minimizing Leakage of Ship's Propulsion Shaft System (선박추진축계부의 누수 최소화를 위한 메커니즘 연구)

  • Cha, Ji-Hyub;Kim, Jeong-Hwan;Kim, Jeong-Ryeol;Park, Jae-Hyoun;Jeong, Ho-Seung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.311-312
    • /
    • 2006
  • 선박의 추진축은 선박의 기관실 최말단부에서 바깥의 프로펠러까지 선체를 관통하여 설치되고 회전하기 때문에 선외로부터의 해수유입을 쳐대한 차단하는 역할을 하는 독특한 메커니즘을 가진 축밀봉장치(Shaft Sealing System)를 필요로 하는데 이것을 스턴튜브 씰(Stem Tube Seal)이라고 한다. 본 연구는 국내 중소형 선사들이 저렴한 가격대비 우수 품질의 씰 및 하우징을 사용할 수 있고 3차원 형상화를 통하여 선박의 운용자가 쉽고 정확하게 스턴튜브 씰을 이해 및 신속 정비가능, 해외업체 생산 규격을 선박 축에 맞게 절단, 접합의 씰 성능저하 관행을 고쳐 선주가 원하는 사양과 규격대로 제작된 우수한 씰 제품을 공급할 수 있고, 선박용 기자재에 대한 기초지식, 씰링 메카니즘, 구조 및 유동 해석 결과를 제공하여 국내 최초의 무접착 원형 메인 씰 개발 및 씰 하우징 제작 및 독자설계 기술을 확립하고자 한다.

  • PDF

Characteristics of shaft Vibration due to Rubbing in the Steam Turbines (증기 터빈에서의 고체 마찰에 의한 축 진동 특성)

  • 하현천;최성필
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.179-183
    • /
    • 1999
  • Rubbing occurs when a rotating element comes in contact with a stationary element. In the steam turbines, the rotating element is the rotor while the stationary elements are usually the oil deflectors and packing seals. Rubbing phenomenon may be often obseued on a new or rebuilt machine rather than on a machine that has been operating for several months or years. Rubbing in the turbine has been classified into two modes by the operating conditions: 1) start up or shut down, 2) steady state. At start up or shut down operation, rubbing produces synchronous whirl vibration, which are caused by thermal bow of the shaft due to localized heating on the shaft surface. While subsynchronous whirl vibration is caused by partial rubbing during the steady state operation. In this paper, the two case studies of troubleshooting for excessive vibration caused by rubbing in the actual steam turbines are investigated.

  • PDF

Some case studies of hydrodynamic bearings in power plants in Japan

  • M Tanaka
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.1-11
    • /
    • 2003
  • The service reliability of power plants strongly depends on the excellent performance and integrity of hydrodynamic bearings. Consequently, the bearings must be properly designed so as to control vibration amplitudes of rotor due to mass unbalance in passing critical speeds and also suppress self-excited vibrations of rotor even over maximum rated speeds. Furthermore, the bearings must be designed so as to maintain required tribological performance even under severe operating conditions. However, various tribological troubles have been experienced in power plants in Japan. The actual troubles are analysed, focusing on not only direct mechanical causes but also specific bearing designs that surfaced the troubles. Furthermore human factors that decided such designs are also studied. The powerful database of troubles and analyses will contribute greatly to designing advanced power plants with enhanced service reliability in the future. To this end, trouble information should be disclosed, shared and transferred limitlessly. Cooperation of users of power plants is essential to making more advanced design specifications, because no one has easier access to operating and trouble information of power plants than users.

  • PDF

Optimized Design of O-Ring using Taguchi Method (다구찌 실험법을 이용한 O-링 형상의 최적설계)

  • Cho Seung Hyun;Kim Chung Kyun;Kim Young Gyu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.241-247
    • /
    • 2003
  • The sealing performance of O-ring is effected in environments of the O-ring seal, like that applied pressure, working temperature, pre-compressed ratio and materials. In this paper, design of composite O-ring under pressurized, compressed was optimized based on Taguchi experimental design method. and it analysed numerically using non-linear finite element method. Ogden model in which is developed based on the experimental data is used for simulating the contact stress and strain in NBR and PTFE materials. Sensitivity analysis was performed with FEM results, which are contact stress, strain and temperature as variable.

  • PDF

EFFECT OF BASE OILS CHARACTERISTICS ON ATF PERFORMANCE

  • Moon, Woo-Sik;Yang, Si-Won
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.191-197
    • /
    • 2001
  • Performance requirements for automatic transmission fluids have been changing to reflect the design changes of automatic transmission. The major purpose for these design changes is to improve fuel economy and drivability. The use of special base oils like API Group III and IV base oils has increased in order to formulate high performance ATF. In this study. the effect of base oils characteristics on ATF performance is investigated, mainly regarding differences in frictional characteristics with deterioration. Moreover, low-temperature fluidity. oxidation stability. and seal compatibility are also compared for four different ATFs. From the investigation, it was found that the use of Group III and IV base oils in ATF has several benefits in low temperature viscosity. oxidation stability and SAE No.2 friction characteristics.

  • PDF

Experimental Study on the Friction Torque Characteristics of Magnetic Fluid Seals for High Vacuum System (고진공용 자성유체시일이 마찰 토오크 특성에 관한 실험적 연구)

  • 김청균;나윤환;김한식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.145-152
    • /
    • 1996
  • This paper deals with an experimental study on the f~iction torque characteristics of magnctic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the fi'iction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model II is 1.73 ~ 2.56, 2.0 ~ 2.89, 2.0 - 3.25 times larger than those of Model I under the atmospheric pressure, vacuum pressure(10$^{-4}$ and 10$^{-6}$ torr), respectively.

  • PDF