• 제목/요약/키워드: lubricant migration

검색결과 3건 처리시간 0.025초

The Effect of Slider Surface Texture on Flyability and Lubricant Migration under Near Contact Conditions

  • Zhou, L.;Kato, K.;Vurens, G.;Talke, F.E.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.277-278
    • /
    • 2002
  • Magnetron and Ion beam sputtering were used to texture the air-bearing surface of magnetic recording sliders. Flying height measurements and Laser-Doppler interferometry were used to compare the 'flyability' of textured and untextured sliders. Lubricant redistribution on the disk surface caused by slider/disk interactions was investigated using scanning ellipsometry (Surface Reflectance Analyzer (SRA)). The results show that slider surface texture causes only small changes in the flying height of sliders but reduces slider in-plane and out-of-plane vibrations. Textured sliders were found to cause less lubricant depletion on the disk surface than untextured sliders.

  • PDF

2-D 반응기를 이용한 선로 하부 토양 내 유류 확산에 관한 연구 (A Study on Oil Diffusion in the Soil under Railroad Track using 2-D Reactor)

  • 강해숙;권태순;정우성;이재영;조영민;전용삼
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.982-984
    • /
    • 2008
  • Generally, the soil around railroad is contaminated by the leakage of oil during its maintenance or the operation of rolling stock. Because the railroad soil is located under ballast and is hardened with the designated strength due to safety, the characteristics of the polluted site are different. In this study, the phenomena of oil diffusion in the railroad site was investigated using 2-D reactor. The used oil was lubricant. As a result, the maximum diffusion depth of lubricant was about 9.5 cm due to its high viscosity and the hardened soil. The lubricant was diffused by gravity more than by horizontal migration. In the future, these results can be applied to develop a remediation method for the contaminated railroad soil.

  • PDF

Head-Disk Interface : Migration from Contact-Start-Stop to Load/Unload

  • Suk, Mike
    • 소음진동
    • /
    • 제9권4호
    • /
    • pp.643-651
    • /
    • 1999
  • A brief description of the current technology (contact-start-stop) employed in most of today's hard disk drive is presented. The dynamics and head/disk interactions during a start/stop process are very complicated and no one has been able to accurately model the interactions. Thus, the head/disk interface that meets the start/stop durability and stiction requirements are always developed statistically. In arriving at a solution. many sets of statistical tests are run by varying several parameters. such as, the carbon overcoat thickness. lubricant thickness. disk surface roughness, etc. Consequently, the cost associated III developing an interface could be significant since the outcome is difficult to predict. An alternative method known as Load/Unload technology alters the problem set. such that. the start/stop performance can be designed in a predictable manner. Although this techno¬logy offers superior performance and significantly reduces statistical testing time, it also has some potential problems. However. contrary to the CSS technology. most of the problems can be solved by design and not by trial and error. One critical problem is that of head/disk contacts during the loading and unloading processes. These contact can cause disk and slider damage because the contacts are likely to occur at high disk speeds resulting in large friction forces. Use of glass substrate disks also may present problems if not managed correctly. Due to the low thermal conductivity of glass substrates. any head/disk contacts may result in erasure due to frictional heating of the head/disk interface. In spite of these and other potential problems. the advantage with L/UL system is that these events can be understood. analyzed. and solved in a deterministic manner.

  • PDF