• Title/Summary/Keyword: lower tropospheric ozone concentration

Search Result 5, Processing Time 0.017 seconds

Evaluation of the Troposphere Ozone in the Reanalysis Datasets: Comparison with Pohang Ozonesonde Observation (대류권 오존 재분석 자료의 품질 검증: 포항 오존존데와 비교 검증)

  • Park, Jinkyung;Kim, Seo-Yeon;Son, Seok-Woo
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2019
  • The quality of troposphere ozone in three reanalysis datasets is evaluated with longterm ozonesonde measurement at Pohang, South Korea. The Monitoring Atmospheric Composition and Climate (MACC), European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERAI) and Modern Era Retrospective-Analysis for Research and Applications version 2 (MERRA2) are particularly examined in terms of the vertical ozone structure, seasonality and long-term trend in the lower troposphere. It turns out that MACC shows the smallest biases in the ozone profile, and has realistic seasonality of lower-tropospheric ozone concentration with a maximum ozone mixing ratio in spring and early summer and minimum in winter. MERRA2 also shows reasonably small biases. However, ERAI exhibits significant biases with substantially lower ozone mixing ratio in most seasons, except in mid summer, than the observation. It even fails to reproduce the seasonal cycle of lower-tropospheric ozone concentration. This result suggests that great caution is needed when analyzing tropospheric ozone using ERAI data. It is further found that, although not statistically significant, all datasets consistently show a decreasing trend of 850-hPa ozone concentration since 2003 as in the observation.

Ozone Monitoring in the Lower Tropospheric Atmosphere by LIDAR System (라이다 시스템을 이용한 하층 대류권 오존농도 측정)

  • 최성철;차형기;김덕현;김영상
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.5
    • /
    • pp.385-393
    • /
    • 2001
  • We have developed a Differential Absortion LIDAR (DIAL) method for the measurement of lower tropospheric ozone concentration. We used two laser beams from quadrupled Nd:YAG (266 nm) for the resonance wavelength and dye lasers (299.5 nm) for non -resonance wavelength. Aerosol extinction coefficients in the lower troposphere was computed by both Klett and Slope methods. To correct the SIN (Signal -Induced Noise) effect caused by photo detector, we subtracted a new-fitted baseline on the background part of a LIDAR signal, after the subtraction of the DC level. This is because SIN can be treated as an exponentially decaying tail. Using theme results, ozone profiles were obtained approximately 2km at daytime and 3km at nighttime. We compared the results derided by the Slope method with those measured by UV spectrometer. The computed results are in mostly good agreement with experimental results. In the measurement of the vertical layer, we observed the variation of the ozone profiles around the top mixed layer.

  • PDF

Effects of the El Niño on Tropospheric Ozone in a Simulation using a Climate-Chemistry Model (기후-대기화학모델이 모의한 엘니뇨가 대류권 오존에 미치는 영향)

  • Moon, Byung-Kwon;Yeh, Sang-Wook;Park, Rokjin J.;Song, Chang-Keun;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.662-668
    • /
    • 2013
  • We examine the effects of El Ni$\tilde{n}$o on tropospheric ozone through the simulation of a Climate-Chemistry model for a 40-year period (1971-2010). The Empirical Orthogonal Function (EOF) analysis reveals that the tropospheric ozone concentration in the central-eastern Pacific decreases when the El Ni$\tilde{n}$o occurs, which is consistent with the observation. However, the increase of ozone over Indian Ocean-Indonesia regions is weak in the simulation compared to the observations. We analyze details of the 2006 El Ni$\tilde{n}$o event to understand the mechanism that caused the change of ozone due to El Ni$\tilde{n}$o. It is found that enhanced convection as well as higher water vapor followed by shortened lifetime has led to lower the tropospheric ozone. Downward motion induced by the changes of atmospheric circulation due to sea surface temperature forcing, together with the decrease of water vapor, has brought ozone produced in the upper troposphere over the Indian Ocean.

Tropospheric Ozone Patterns in the Metropolitan Seoul Area During 1990~1997 Using Two Ozone Indices of Accumulation over the Threshold Concentrations (한계농도 누적 오존지표로 본 1990~1997년의 수도권 오존농도 변화)

  • 윤성철;박은우;장영기
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.429-439
    • /
    • 1999
  • In order to assess the chronic impact of tropospheric ozone on vegetation in the Seoul metropolitan area, it is necessary to quantify ozone exposure. Two ozone indices commonly used to relate ozone exposure to injury of vegetation were calculated. SUM06(SUM of hourly concentrations at or above 0.06 ppm) and AOT40(Accumulated exposure Over a Threshold of 40 ppb) which are widely used as ozone indices in the US and Europe were calculated based on hourly ozone concentrations in 5 areas of Seoul and 5 cities of Kyunggido during 1990~1997. Most SUM06 levels were 1~5ppm.hr, however several areas in Northern and Eastern Seoul reached about 5~7 ppm.hr in 1996~1997. AOT40 values were as high as 17~24 ppm.hr. Although measured SUM06 levels would not be expected to significantly impact vegetation, the overall ozone index, as well as annual average, 95th, and 99th percentile have increased continuously over the last 8 years. Often, ozone concentrations are lower in cities where there is a significant NOx concentration, than in outlying rural agricultural areas where NOx scrubbing is not as important. Concentrations greater than 40 ppb, which can cause chronic ozone toxicity to vegetation, were found mostly in the summer and constitutued about 5~15% of total hourly ozone cocentrations.

  • PDF

Emission of Biogenic Volatile Organic Compounds from Trees along Streets and in Urban Parks in Tokyo, Japan

  • Matsunaga, Sou N.;Shimada, Kojiro;Masuda, Tatsuhiko;Hoshi, Junya;Sato, Sumito;Nagashima, Hiroki;Ueno, Hiroyuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2017
  • Ozone concentration in Tokyo Metropolitan area is one of the most serious issues of the local air quality. Tropospheric ozone is formed by radical reaction including volatile organic compound (VOC) and nitrogen oxides ($NO_x$). Reduction of the emission of reactive VOC is a key to reducing ozone concentrations. VOC is emitted from anthropogenic sources and also from vegetation (biogenic VOC or BVOC). BVOC also forms ozone through $NO_x$ and radical reactions. Especially, in urban area, the BVOC is emitted into the atmosphere with high $NO_x$ concentration. Therefore, trees bordering streets and green spaces in urban area may contribute to tropospheric ozone. On the other hand, not all trees emit BVOC which will produce ozone locally. In this study, BVOC emissions have been investigated (terpenoids: isoprene, monoterpenes, sesquiterpenes) for 29 tree species. Eleven in the 29 species were tree species that did not emit BVOCs. Three in 12 cultivars for future planting (25 %) were found to emit no terpenoid BVOCs. Eight in 17 commonly planted trees (47%) were found to emit no terpenoid BVOC. Lower-emitting species have many advantages for urban planting. Therefore, further investigation is required to find the species which do not emit terpenoid BVOC. Emission of reactive BVOC should be added into guideline for the urban planting to prevent the creation of sources of ozone. It is desirable that species with no reactive BVOC emission are planted along urban streets and green areas in urban areas, such as Tokyo.