• Title/Summary/Keyword: lower resolution motion vector

Search Result 7, Processing Time 0.028 seconds

An algorithm for Video Object Detection using Multiresolution Motion Estimation (다해상도 움직임 예측을 이용한 동영상 물체탐지 알고리즘)

  • 조철훈;박장한;이한우;남궁재찬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.87-95
    • /
    • 2003
  • This paper proposes an object detection algorithm using the Multiresolution Motion Estimation(MRME) in wavelet d야main. A existing motion estimation method has characteristics of motion estimation but it requires having computation. Motion estimation in higher resolution used the motion vector of the lower resolution with the MRME that has parent-child relationship on wavelet coefficients. This method reduces the search area of motion estimation in higher resolution and computational complexity. The computational complexity of the proposed method is about 40% of the existing method using 3-level Set Partitioning in Hierarchical Trees(SPIHT) wavelet transform. The experimental results with the proposed method showed about 11% decrease of Mean Absolute Difference(MAD) and gains able to precise tracking of object.

Efficient Technique of Motion Vector Re-estimation in Transcoding (트랜스 코딩에서의 효율적인 움직임 벡터 재추정 기법 연구)

  • 한두진;박강서;유희준;김봉곤;박상희
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.8
    • /
    • pp.602-605
    • /
    • 2004
  • A novel motion vector re-estimation technique for transcoding into lower spatial resolution is proposed. This technique is based on the fact that the block matching error is proportional to the complexity of the reference block with Taylor series expansion. It is shown that the motion vectors re-estimated by the proposed method are closer to optimal ones and offer better quality than those of previous techniques.

Variable Block Size Motion Estimation Techniques for The Motion Sequence Coding (움직임 영상 부호화를 위한 가변 블록 크기 움직임 추정 기법)

  • 김종원;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.104-115
    • /
    • 1993
  • The motion compensated coding (MCC) technique, which exploits the temporal redundancies in the moving images with the motion estimation technique,is one of the most popular techniques currently used. Recently, a variable block size(VBS) motion estimation scheme has been utilized to improve the performance of the motion compensted coding. This scheme allows large blocks to the used when smaller blocks provide little gain, saving rates for areas containing more complex motion. Hence, a new VBS motion estimation scheme with a hierarchical structure is proposed in this paper, in order to combine the motion vector coding technique efficiently. Topmost level motion vector, which is obtained by the gain/cost motion estimation technique with selective motion prediction method, is always transmitted. Thus, the hierarchical VBS motion estimation scheme can efficiently exploit the redundancies among neighboring motion vectors, providing an efficient motion vector encoding scheme. Also, a restricted search with respect to the topmost level motion vector enables more flexible and efficient motion estimation for the remaining lower level blocks. Computer simulations on the high resolution image sequence show that, the VBS motion estimation scheme provides a performance improvement of 0.6~0.7 dB, in terms of PSNR, compared to the fixed block size motion estimation scheme.

  • PDF

Motion vector re-estimation technique for transcoding into lower spatial resolution (낮은 공간 해상도로의 디지털 비디오 변환 부호화기에 대한 움직임 벡터 추정 기법)

  • Kim, Bong-Gon;Park, Kang-Seo;Park, Sang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2732-2734
    • /
    • 2003
  • 본 논문에서는 낮은 공간 해상도로의 디지털 비디오 변환 부호화기에 대한 움직임 벡터 추정 기법을 제안한다. 블록 정합 에러가 테일러 급수 전개에 의한 참조 블록의 복잡도에 비례한다는 사실에 근거하여 새로운 움직임 벡터 평가식을 유도하여 변환 부호화기에 대한 움직임 벡터를 이 평가식에 의해 추정한다. 제안한 방법에 의해 추정된 움직임 벡터들은 기존 방법에 의해 추정된 벡터보다 최적 벡터에 더 인접하였으며, 부호화된 영상은 더 좋은 화질을 보인다. 특히 빠른 움직임을 포함하는 영상에서 제안된 방법의 우수성은 더 두드러진다.

  • PDF

An Adaptive Bit-reduced Mean Absolute Difference Criterion for Block-Matching Algorithm and Its VlSI Implementation (블럭 정합 알고리즘을 위한 적응적 비트 축소 MAD 정합 기준과 VLSI 구현)

  • Oh, Hwang-Seok;Baek, Yun-Ju;Lee, Heung-Kyu
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.5
    • /
    • pp.543-550
    • /
    • 2000
  • An adaptive bit-reduced mean absolute difference (ABRMAD) is presented as a criterion for the block-matching algorithm (BMA) to reduce the complexity of the VLSI Implementation and to improve the processing time. The ABRMAD uses the lower pixel resolution of the significant bits instead of full resolution pixel values to estimate the motion vector (MV) by examining the pixels Ina block. Simulation results show that the 4-bit ABRMAD has competitive mean square error (MSE)results and a half less hardware complexity than the MAD criterion, It has also better characteristics in terms of both MSE performance and hardware complexity than the Minimax criterion and has better MSE performance than the difference pixel counting(DPC), binary block-matching with edge-map(BBME), and bit-plane matching(BPM) with the same number of bits.

  • PDF

The Impact of Spatio-temporal Resolution of GEO-KOMPSAT-2A Rapid Scan Imagery on the Retrieval of Mesoscale Atmospheric Motion Vector (천리안위성 2A호 고속 관측 영상의 시·공간 해상도가 중규모 대기운동벡터 산출에 미치는 영향 분석)

  • Kim, Hee-Ae;Chung, Sung-Rae;Oh, Soo Min;Lee, Byung-Il;Shin, In-Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.885-901
    • /
    • 2021
  • This paper illustratesthe impact of the temporal gap between satellite images and targetsize in mesoscale atmospheric motion vector (AMV) algorithm. A test has been performed using GEO-KOMPSAT-2A (GK2A) rapid-scan data sets with a temporal gap varying between 2 and 10 minutes and a targetsize between 8×8 and 40×40. Resultsshow the variation of the number of AMVs produced, mean AMV speed, and validation scores as a function of temporal gap and target size. As a results, it was confirmed that the change in the number of vectors and the normalized root-mean squared vector difference (NRMSVD) became more pronounced when smaller targets are used. In addition, it was advantageous to use shorter temporal gap and smaller target size for the AMV calculation in the lower layer, where the average speed is low and the spatio-temporal scale of atmospheric phenomena is small. The temporal gap and the targetsize are closely related to the spatial and temporalscale of the atmospheric circulation to be observed with AMVs. Thus, selecting the target size and temporal gap for an optimum calculation of AMVsrequires considering them. This paper recommendsthat the optimized configuration to be used operationally for the near-real time analysis of mesoscale meteorological phenomena is 4-min temporal gap and 16×16 pixel target size, respectively.

Airspeed Estimation Through Integration of ADS-B, Wind, and Topology Data (ADS-B, 기상, 지형 데이터의 통합을 통한 대기속도 추정)

  • Kim, Hyo-Jung;Park, Bae-Seon;Ryoo, Chang-Kyung;Lee, Hak-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.67-74
    • /
    • 2022
  • To analyze the motion of aircraft through computing the dynamics equations, true airspeed is essential for obtaining aerodynamic loads. Although the airspeed is measured by on-board instruments such as pitot tubes, measurement data are difficult to obtain for commercial flights because they include sensitive data about the airline operations. One of the commonly available trajectory data, Automatic Dependent Surveillance-Broadcast data, provide aircraft's speed in the form of ground speed. The ground speed is a vector sum of the local wind velocity and the true airspeed. This paper present a method to estimate true airspeed by combining the trajectory, meteorological, and topology data available to the public. To integrate each data, we first matched the coordinate system and then unified the altitude reference to the mean sea level. We calculated the wind vector for all trajectory points by interpolating from the lower resolution grid of the meteorological data. Finally, we calculate the true airspeed from the ground speed and the wind vector. These processes were applied to several sample trajectories with corresponding meteorological data and the topology data, and the estimated true airspeeds are presented.