• Title/Summary/Keyword: lower explosive limit

Search Result 33, Processing Time 0.024 seconds

Prediction of Temperature Dependence of Explosion Limits and Interrelationship of Explosion Characteristics for Akylketones (알킬케톤류의 폭발 특성치 간의 상관관계 및 폭발한계의 온도의존성 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.7-13
    • /
    • 2006
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion characteristics. The explosion limit, the heat of combustion, flame temperature and temperature dependence of the lower explosive limit are the major combustion characteristics used to determine the fire and explosion hazards of the flammable substances. The aim of this study is to investigate interrelationship of explosion characteristics and the temperature dependence of the lower explosion limit at elevated temperature for akylketones. By using the reference data, the empirical equations which describe the interrelationships of explosion properties of akylketones have been derived. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosion limits of akylketones on the basis of the literature data are proposed. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable substances.

  • PDF

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

Analysis of Internal Flow and Control Speed for NH3 (Ammonia) Leakage Scenario of ALD Facility (ALD 설비의 NH3(Ammonia)누출 시나리오에 대한 내부유동 및 제어 속도 해석)

  • Lee, Seoung-Sam;An, Hyeong-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.22-27
    • /
    • 2022
  • Atomic Layer Deposition (ALD) is a facility that deposits an atomic layer on a wafer by causing a chemical reaction after decomposition using heat or plasma by inputting two or more gases during the semiconductor process. The main gas used at this time is NH3 (Ammonia). NH3 has a relatively narrow explosive range with an upper limit (UFL) of 33.6% and a lower limit (LEL) of 15%, but it can explode if a large amount suddenly gathers in one place. It is Velocity and fatal if inhaled or in contact with the skin. NH3 (Ammonia) of ALD (Atomic Layer Deposition) facility is supplied to the chamber through the gas inlet and discharged after the reaction.

Fabrication of Semiconductor Gas Sensor Array and Explosive Gas-Sensing Characteristics (반도체 가스 센서 어레이의 제작 및 폭발성가스 감응 특성)

  • Lee, Dae-Sik;Jung, Ho-Yong;Ban Sang-Woo;Lee, Min-Ho;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.9-17
    • /
    • 2000
  • A sensor array with 10 discrete sensors integrated on a substrate was developed for discriminating the kinds and quantities of explosive gases. The sensor array consisted of 10 oxide semiconductor gas sensors with $SnO_2$ as base material and had broad sensitivity to specific gas. The sensor array was designed with uniform thermal distribution and had also high sensitivity and reproductivity to low gas concentration through nano-sized sensing materials with different additives. By using the sensitivity signal of the sensor array at $400^{\circ}C$, we could reliably discriminate the kinds and quantities of explosive gases like butane, propane and methane under the lower explosion limit through the principal component analysis (PCA) method.

  • PDF

Method for evaluating the safety performance and protection ability of the mobile steel protective wall during the high-explosive ammunition test (고폭탄 탄약시험 간 이동형 강재 방호벽의 안전성능 판단 및 유효 방호력 평가 방법)

  • Jeon, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.573-582
    • /
    • 2021
  • In this study, a series of processes for evaluating the effective protection against barriers that should be equipped in institutions that perform reliability tests on high-risk ammunition, such as high-explosive ammunition, were introduced. The impact that high-explosive bombs can have on personnel includes damage to the eardrum and lungs caused by explosion overpressure and penetrating wounds that can be received by fragments generated simultaneously with the explosion. Therefore, a high-explosive with COMP B explosives as its contents were set up, and an explosion protection theory investigation to calculate the degree of damage, numerical calculations and simulations were performed to verify the protection power. A numerical calculation revealed the maximum explosion overpressure on the protective wall when the high-explosive exploded and the penetration force of the fragment against a 50 mm-thick protective wall to be 77.74 kPa and 41.34 mm, respectively. In the simulation verification using AUTODYN, the maximum explosion overpressures affecting the firewall and personnel were 56.68 kPa and 18.175 kPa, respectively, and the penetration of fragments was 35.56 mm. This figure is lower than the human damage limit, and it was judged that the protective power of the barrier would be effective.

Characteristics of Acetaldehyde Decomposition over Heat Treated Cobalt Phthalocyanine Catalysts (열처리 조건에 따른 코발트 프탈로시아닌 촉매상에서 아세트알데히드 분해 특성)

  • 서성규;윤형선;김대중
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.489-490
    • /
    • 2003
  • 아세트알데히드는 석유화학관련시설에서 많이 배출되는 것으로 알려져 있으며, 환경부 고시(제2001-36호)에 이를 포함한 37개 VOC 규제제품 및 물질로 명시되어 있다. 또한, 현재의 8개 악취물질에도 포함되어 있어 강력히 규제하고 있는 물질이다. 아세트알데히드의 주요 특성으로서 최소감지농도는 0.21ppm, LEL(Lower Explosive Limit)은 4%로 반응성이 매우 크며, 액상 및 증기상에서 가연성이 매우 큰 물질이다. 이러한 물질을 처리하기 위해 직접연소법과 촉매연소법을 이용하여 처리하고 있으나, 직접연소법을 이용하는 소각로의 경우 산업폐기물을 소각하는 과정에서 아세트알데히드가 배출되고 있어 아세트알데히드의 주 배출원 이며 고온처리로 인한 비용부담의 단점이 있다. (중략)

  • PDF

A Study on Determination of Range of Hazardous Area Caused by the Secondary Grade of Release of Vapor Substances Considering Material Characteristic and Operating Condition (물질특성 및 운전조건을 고려한 증기상 물질의 2차 누출에 따른 폭발위험장소 범위 선정에 관한 연구)

  • Seo, Minsu;Kim, Kisug;Hwang, Yongwoo;Chon, Youngwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.13-26
    • /
    • 2018
  • Currently, local regulations, such as KS Code, do not clearly specify how to calculate the range of hazardous area, so the dispersion modeling program should be used to select dispersion. The purpose of this study is to present a methodology of determining the range of hazardous area which is simpler and more reasonable than modelling by using representative materials and process conditions. Based on domestic and overseas regulations that are currently in effect, variables affecting distance to LFL(Lower Flammable Limit) were selected. A total of 16 flammable substances were modelled for substance variables, process conditions variables, and weather conditions variables, and the statistical analysis selected the variables that affect them. Using the selected variables, a three-step classification method was prepared to select the range of locations subject to explosion hazard.

A Study on the Explosion Phenomenon and Flame Propagation of LP Gas (LP가스의 폭발 현상 및 화염전파에 관한 연구)

  • Choi, Jae-Wook;Lee, Dong-Hoon;Kim, Tae-Gn;Min, Wong-Chul;Lim, Woo-Sub;Choi, Byoung-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.65-70
    • /
    • 2007
  • The explosion phenomenon and hazard estimate of LP gas, the study was examined into variation of oxygen concentration and LP gas concentration. As the result of experiment, the lower explosive limit was decreased as the increased at concentration of LP gas and 21% of oxygen concentration. Minimum oxygen concentration was 14.5%. 12.0%, 11.5% at 1.0, 1.5 and 2.0 bar respectively. And maximum explosion pressure was increased for $6.46kg/cm^2,\;9.41kg/cm^2\;and\;13.49kg/cm^2$ according to increased of pressure. The speed of flame propagation was increased as the higher with initial pressure of LP gas.

  • PDF

Low-Oxygen Atmosphere and its Predictors among Agricultural Shallow Wells in Northern Thailand

  • Wuthichotwanichgij, Gobchok;Geater, Alan F.
    • Safety and Health at Work
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2015
  • Background: In 2006, three farmers died at the bottom of an agricultural shallow well where the atmosphere contained only 6% oxygen. This study aimed to document the variability of levels of oxygen and selected hazardous gases in the atmosphere of wells, and to identify ambient conditions associated with the low-oxygen situation. Methods: A cross-sectional survey, conducted in June 2007 and July 2007, measured the levels of oxygen, carbon monoxide, hydrogen sulfide, and explosive gas (percentage of lower explosive limit) at different depths of the atmosphere inside 253 wells in Kamphaengphet and Phitsanulok provinces. Ambient conditions and well use by farmers were recorded. Carbon dioxide was measured in a subset of wells. Variables independently associated with low-oxygen condition (<19.5%) were identified using multivariate logistic regression. Results: One in five agricultural shallow wells had a low-oxygen status, with oxygen concentration decreasing with increasing depth within the well. The deepest-depth oxygen reading ranged from 0.0% to 20.9%. Low levels of other hazardous gases were detected in a small number of wells. The low-oxygen status was independently associated with the depth of the atmosphere column to the water surface [odds ratio (OR) = 13.5 for 8-11 m vs. <6 m], depth of water (OR = 0.17 for 3-<8 m vs. 0-1 m), well cover (OR = 3.95), time elapsed since the last rainfall (OR = 7.44 for >2 days vs. <1 day), and location of well in sandy soil (OR = 3.72). Among 11 wells tested, carbon dioxide was detected in high concentration (>25,000 ppm) in seven wells with a low oxygen level. Conclusion: Oxygen concentrations in the wells vary widely even within a small area and decrease with increasing depth.

Experiment and Simulation of Diffusion of Gas Released from the Relief Valve of a Gas Cylinder for a Portable Gas Range (압력 방출밸브를 장착한 이동식 부탄연소기용 부탄캔의 분출가스 확산 실험 및 해석)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • In the last five years, 91 accidents from portable gas ranges and non-refillable metallic gas cartridges have occurred. The gas cylinder installed with a relief valve was developed to prevent an explosive accident from the gas cartridge. In this study it was carried out to evaluate the safety of a gas cylinder mounted with a relief valve which can prevent an explosion. Under the real using condition and the extreme condition the gas cylinder is heated with an electric heater. Simultaneously, the operating pressure is checked and the suitability of releasing flux is evaluated. And the possibility of fire or explosion was tested when the gas was released from the relief valve at the real using condition. Using a numerical simulation method, the diffusion of butane gas released from a relief valve was visualized.