• 제목/요약/키워드: lower co-ion leakage

검색결과 3건 처리시간 0.017초

전기설비의 저항성 누설전류 검출 및 특성 해석에 관한 연구 (Study on the Resistivity Leakage Current Detection and Properties Analysis of Electrical Installat ion)

  • 최충석;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기설비전문위원
    • /
    • pp.301-304
    • /
    • 2008
  • In this paper, we study from of flowing leakage current in electrical installation. Leakage current is expressed by a resistivity leakage current($I_{gr}$), a capacitive leakage current($I_{gc}$), an inductivity leakage current($I_{gl}$). General Zero Phase Current Transformer (ZCT) detect a leakage current($I_{g}$) that are conjoined resistivity leakage current and capacitive leakage current. In case $I_{gr}$ is big than $I_{gc}$, there is no singular problem in leakage current detection of system. But, in case $I_{gc}$ is big than $I_{gr}$, earth leakage breaker can not prevent accident effectively. Can lower electric leakage perception current to 5 mA if apply resistivity leakage current detecting circuit. We can achieve prevention of electricity disaster spontaneously.

  • PDF

$CoSi_{2}$ 에피박막을 확산원으로 이용하여 형성한 매우 얇은 접합의 전기적 특성 (Electrical properties of Ultra-Shallow Junction formed by using Epitaxial $CoSi_{2}$ Thin Film as Diffusion Source)

  • 구본철;심현상;정연실;배규식
    • 한국재료학회지
    • /
    • 제8권5호
    • /
    • pp.470-473
    • /
    • 1998
  • Co/Ti 이중막을 급속열처리하여 형성한 $CoSi_{2}$$As^+$을 이온주입한 후, 500~$1000^{\circ}C$에서 drive-in 열처리하여 매우얇은 $n_{+}$ p접합의 다이오드를 제작하고 I-V 특성을 측정하였다. $500^{\circ}C$에서 280초 drive-in 열처리하였을 때, 50nm정도의 매우 얇은접합이 형성되었고, 누설전류가 매우 낮아 가장 우수한 다이오드 특성을 나타내었다. 특히, Co 단일막을 사용한 다이오드에 비해 누설전류는 2order 이상 낮았으며, 이는 $CoSi_{2}$Si의 계면이 균일하였기 때문이다.

  • PDF

Formation of Hydroxyapatite in Portland Cement Paste

  • Chung, Chul-Woo;Lee, Jae-Yong;Kim, Ji-Hyun
    • 한국건축시공학회지
    • /
    • 제14권1호
    • /
    • pp.68-75
    • /
    • 2014
  • In order to increase the integrity of the wellbore which is used to prevent the leakage of supercritical $CO_2$, it is necessary to develop a concrete that is strongly resistant to carbonation. In an environment where the concentration of $CO_2$ is exceptionally high, $Ca^{2+}$ ion concentration in pore solution of Portland cement concrete will drop significantly due to the rapid consumption of calcium hydroxide, which decreases the stability of the calcium silicate hydrate. In this research, calcium phosphates were used to modify Portland cement system in order to produce hydroxyapatite, a hydration product that is strongly resistant to carbonation under such an environment. According to the experimental results, calcium phosphates reacted with Portland cement to form hydroxyapatite. The formation of hydroxyapatite was verified using X-ray diffraction analyses with selective extraction techniques. When using dicalcium phosphate dihydrate and tricalcium phosphate, the 28-day compressive strength was lower than that of plain cement paste. However, the specimen with monocalcium phosphate monohydrate showed equivalent strength to that of plain cement paste.