• Title/Summary/Keyword: lower amplitude

Search Result 483, Processing Time 0.026 seconds

Effect of Interphase Condition and Fiber Content on the Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (계면상 조건과 단섬유 함유량이 단섬유 강화CR의 동적특성에 미치는 영향)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1151-1156
    • /
    • 2003
  • The dynamic properties of short-fiber reinforced Chloroprene rubber for vibration isolators have been studied as functions of interphase conditions and fiber content. The loss factor showed the maximum at strain amplitude 2%, and increased 0.09 for matrix, 0.05 for reinforced rubber with increasing frequency respectively. The dynamic ratio rapidly decreased with increasing strain amplitude, and some increased with increasing frequency. The better interphase condition showed the lower dynamic ratio. Therefore, the short-fiber reinforced rubber could have the better isolation in frequency ratio(${\sqrt{2}}min$.) compared to frequency ratio(${\sqrt{2}}max$.). And we have investigate the possibility of applying short-fiber reinforced rubber to automotive engine mount.

  • PDF

Fretting Wear Mechanisms of TiN Coated Nuclear Fuel Rod Cladding Tube (TiN 코팅한 핵연료봉 피복재의 프레팅 마멸기구)

  • 김태형;성지현;김석삼
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.453-458
    • /
    • 2001
  • The fretting wear of a nuclear fuel rod it a dangerous phenomenon. In this study, TiN coating was used to reduce the fretting wear of Zircaloy-4 tube, a nuclear fuel rod cladding material. TiN coating is probably one of the molt frequently and successfully used PVD coatings for the mitigation of fretting wear. The fretting tester was designed and manufactured for this experiment. The number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. The results of this research showed that wear volume was improved 1.3∼3.2 times with TiN coating. The worn surfaces were observed by SEM. Wear mechanism at lower slip amplitude was the brittle cracks and rupture of TiN coating. However, adhesive and abrasive wear were mainly observed on most surfaces at higher slip amplitude.

A Study on Autoignition of Fish Meal with Change of Ambient Temperature (주위온도 변화에 따른 어분의 자연발화에 관한연구)

  • 목연수;최재욱
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.47-56
    • /
    • 1992
  • Spontaneous ignition charactenstics for fish meal were observed by performing experiments at constant ambient temperature and varying the ambient temperature sinusoidally. As the results of the experiments at a constant ambient temperature, the critical spontaneous ignition temperature of the sample for large, intermediate and small vessels was 170.5$^{\circ}C$, 177.5$^{\circ}C$ and 188.5$^{\circ}C$, respectively. The critical spontaneous ignition temperature decreased as the sample vessel size increased. Apparent activation energy of used fish meal calculated from the Frank-Kamenetskii's thermal ignition theory was 37.60Kcal/mol. In case of varying the ambient temperature sinusoidally, the amplitudes of temperature were 1$0^{\circ}C$, 2$0^{\circ}C$ and 3$0^{\circ}C$ respectively with the period in each amplitude 1hr, 2hrs and 3hrs. The results showed that the critical spontaneous ignition temperatures at the varied amplitudes of temperature were lower than that at the constant anbient temperature and increased as the amplitude increased. At the same amplitude, the critical spontaneous ignition temperature increased with the period.

  • PDF

A Study on Dynamic Properties of Short-fiber Reinforced Chloroprene Rubber (단섬유 강화 Chloroprene 고무의 동적특성 연구)

  • 이동주;류상렬
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The dynamic properties of short-fiber reinforced chloroprene rubber with different interphase conditions and fiber contents have been studied as functions of frequency, amplitude and temperature. The loss factor(LF) slightly increased more than 1.33% of strain and the dynamic ratio(DR) rapidly decreased with increasing strain amplitude. The LF rapidly decreased with increasing frequency especially more than 50Hz. The DR showed the lower when it compared to virgin material with increasing frequency. The LF showed the maximum at $65^{\circ}$ and rapidly decreased after that temperature. The DR showed the lower when it compared with virgin rubber with increasing temperature. Generally, the better interphase condition showed the lower LF and DR at the same testing condition. Therefore, the short-fiber reinforced rubber could have the better isolation when the frequency ratio is more than $\sqrt{2}$ compared with frequency ratio less than $\sqrt{2}$.

Distributions on F0 and Amplitude of Persons with Cerebral Palsy in the Reading Task (읽기과제에서 나타난 뇌성마비인의 기본주파수 및 진폭의 분포 특성)

  • Nam, Hyun-Wook;Choi, Yang-Gyu
    • MALSORI
    • /
    • no.66
    • /
    • pp.1-20
    • /
    • 2008
  • The purpose of this study was to investigate the characteristics of fundamental frequency(F0) and amplitude distributions in persons with cerebral palsy(CP) in the reading task. Participants were divided into three groups: 6 persons with spastic CP, 6 persons with athetoid CP and 6 normal persons who are around 15-20 years old. On the results of this study, firstly, in F0 distributions, most of the spastic CPs tended to appear narrow distributions on the basis of mode, but most of the athetoid CPs were opposite, and both of the CP groups tended to distribute highly on lower and higher frequencies than mean and mode. On the other hand, normal persons had a tendency to appear narrow distributions on the basis of mode. Finally, in amplitude distributions, the spastic CPs showed a tendency that there are little differences between the distribution of mode and the others, and most of the athetoid CPs showed a tendency that the distributions of mode were higher than the others. In addition to, the normal persons had a tendency that the distributions of mode were remarkably higher than both of the CP groups.

  • PDF

Effects of Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Lower Extremities of Subacute Stage Incomplete Spinal Cord Injury Patients: A Randomized Controlled Trial

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • The aim of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) can improve motor recovery in the lower extremities of the patients with subacute stage spinal cord injury (SCI). This study was conducted with 19 subjects diagnosed with paraplegia because of SCI. The experimental group included 10 subjects who underwent active rTMS, and the control group included 9 subjects who underwent sham rTMS. The SCI patients in the experimental group underwent conventional rehabilitation therapy, and active rTMS was applied daily to the hotspot of the lesional hemisphere. The SCI patients in the control group underwent sham rTMS and conventional rehabilitation therapy. The participants in both the groups received therapy five days per week for six weeks. Latency, amplitude, and velocity were assessed before and after the six-week therapy period. A significant difference in post-treatment gains for the latency and velocity was observed between the experimental and control groups (p < 0.05). However, no significant differences in the amplitude were observed between the two groups (p > 0.05). The results of this study indicate that rTMS may be beneficial in improving motor recovery in the lower extremities of subacute stage SCI patients.

Effect of Repetitive Opening Movement and Head Posture on the Vibration of the Temporomandibular Joint (반복적 개구운동과 두부자세의 변화가 악관절진동에 미치는 영향)

  • Kwag, Dong-Kon;Han, Kyung-Soo;Kim, Jong-Young
    • Journal of Oral Medicine and Pain
    • /
    • v.25 no.1
    • /
    • pp.87-97
    • /
    • 2000
  • This study was performed to investigate the effects of repetitive mandibular opening movement and change of head posture on the vibration of temporomandibular(TM) joint. For this study, 23 patients with internal derangement of TM joint were selected. All they had clinically noticeable TM joint sound. Observation of the joint vibration were performed in four head postures, namely, natural head posture (NHP), forward head posture(FHP), upward head posture(UHP), and downward head posture(DHP). For recording of joint sound vibration, Sonopak of Biopak system(Bioresearch Inc., Milwaukee, USA) was used, The author could take results related to integral higher than 300Hz, integral lower than 300Hz, ratio of integral higher than 300Hz to integral lower than 300Hz, total integral which was sum of higher and lower integral, peak amplitude, and peak frequency in each opening movement, which was carried out three times in each head posture. Integral means amount of vibration. The data obtained were analysed by SPSS windows program and the results of this study were as follows : 1. In NHP, total integral in right TM joint was 5O.3Hz in the first opening, 67.9Hz in the second opening, and 74.0Hz in the third opening movement, bur there was no significant increase of total integral with repetitive opening movement. This finding was similar in left TM joint. Integral lower than 300Hz were higher than integral higher than 300Hz in almost every opening movement. 2. There was no significant difference of total integral between right and left side of TM joint, but there was a tendency of higher total integral in right TM joint than that in left TM joint except for results in DHP. 3. Peak amplitude in NHP ranged from 2.0 to 4.7, and peak frequency in NHP were 101.4-170.0Hz. And there was no consistent findings related to increase or decrease of these value according to repetitive opening in each head posture. 4. Change of head posture did not result any difference in integral, peak amplitude, and peak frequency. In conclusion, change of head posture and repetitive mandibular opening movement did not make any significant effect on the vibration of temporo-mandibular joint, especially, on total integral, peak amplitude, and peak frequency.

  • PDF

AWM Driving Method with Hybrid Current Control for PM-OLED Panel (수동형 OLED를 위한 복합 전류 제어 기능을 갖는 AWM 구동방식)

  • Kim, Seok-Man;Lee, Je-Hoon;Hur, Yeo-Jin;Kim, Yong-Hwan;Cho, Kyoung-Rok
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.116-123
    • /
    • 2007
  • This paper proposed a new amplitude width modulation for OLED data driver IC. The data driver controls brightness of OLED by adjusting amplitude and width of the data drive current pulse. There were two conventional methods; pulse amplitude modulation(PAM) and pulse width modulation(PWM). The PWM method suffered from lower light emitting time efficiency at low luminance signal. The PAM method suffered from large chip area using DACs for each column. The proposed method was aiming at accurately controlling of the current level by MSB data and light emitting efficiency by LSB data to improve the inefficiencies of the PAM and a PWM. The proposed AWM driver circuit implemented using $0.35-{\mu}m$ 3-poly 4-metal CMOS high voltage process. The simulation result shows the improvement in the accuracy of the gray level control even though the driver circuit is smaller than the PAM.

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

Reproducibility of Electromyography Signal Amplitude during Repetitive Dynamic Contraction

  • Mo, Seung-Min;Kwag, Jong-Seon;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.689-694
    • /
    • 2011
  • Objective: The aim of this study is to evaluate the fluctuation of signal amplitude during repetitive dynamic contraction based on surface electromyography(EMG). Background: The most previous studies were considered isometric muscle contraction and they were difference to smoothing window length by moving average filter. In practical, the human movement is dynamic state. Dynamic EMG signal which indicated as the nonstationary pattern should be analyzed differently compared with the static EMG signal. Method: Ten male subjects participated in this experiment, and EMG signal was recorded by biceps brachii, anterior/posterior deltoid, and upper/lower trapezius muscles. The subject was performed to repetitive right horizontal lifting task during ten cycles. This study was considered three independent variables(muscle, amplitude processing technique, and smoothing window length) as the within-subject experimental design. This study was estimated muscular activation by means of the linear envelope technique(LE). The dependent variable was set coefficient of variation(CV) of LE for each cycle. Results: The ANOVA results showed that the main and interaction effects between the amplitude processing technique and smoothing window length were significant difference. The CV value of peak LE was higher than mean LE. According to increase the smoothing window length, this study shows that the CV trend of peak LE was decreased. However, the CV of mean LE was analyzed constant fluctuation trend regardless of the smoothing window length. Conclusion: Based on these results, we expected that using the mean LE and 300ms window length increased reproducibility and signal noise ratio during repetitive dynamic muscle contraction. Application: These results can be used to provide fundamental information for repetitive dynamic EMG signal processing.