• 제목/요약/키워드: low-velocity impact response

검색결과 64건 처리시간 0.022초

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석 (Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Experimental and numerical investigation into the damage response of composite sandwich panels to low-velocity impact

  • Feng, Dianshi;Aymerich, Francesco
    • Structural Monitoring and Maintenance
    • /
    • 제4권2호
    • /
    • pp.133-151
    • /
    • 2017
  • The paper describes the results of an experimental and numerical investigation into the structural and damage response of sandwich composites to low-velocity impact. Sandwich panels consisting of laminated composite skins with three different layups bonded to a PVC foam core were subjected to impact at various energy levels corresponding to barely visible impact damage (BVID) in the impacted skins. Damage assessment analyses were performed on the impacted panels to characterise the extent and the nature of the major failure mechanisms occurring in the skins. The data collected during the experimental analyses were finally used to assess the predictive capabilities of an FE tool recently developed by the authors for detailed simulation of impact damage in composite sandwich panels. Good agreement was observed between experimental results and model predictions in terms of structural response to impact, global extent of damage and typical features of individual damage mechanisms.

Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Structural Engineering and Mechanics
    • /
    • 제68권3호
    • /
    • pp.325-334
    • /
    • 2018
  • The Nonlinear dynamic response of a sandwich plate subjected to the low velocity impact is theoretically and experimentally investigated. The Hertz law between the impactor and the plate is taken into account. Using the Extended High Order Sandwich Panel Theory (EHSAPT) and the Ritz energy method, the governing equations are derived. The skins follow the Third order shear deformation theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the three dimensional elasticity is used for the core. The nonlinear Von Karman relations for strains of skins and the core are adopted. Time domain solution of such equations is extracted by means of the well-known fourth-order Runge-Kutta method. The effects of core-to-skin thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that these parameters play significant role in the impact force and dynamic response of the sandwich plate. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The results are compared with experimental data acquired by impact testing on sandwich plates as well as the results of finite element simulation.

Experimental investigation of low-velocity impact characteristics of steel-concrete-steel sandwich beams

  • Sohel, K.M.A.;Richard Liew, J.Y.;Alwis, W.A.M.;Paramasivam, P.
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.289-306
    • /
    • 2003
  • A series of tests was conducted to study the behaviour of steel-composite sandwich beams under low velocity hard impact. Damage characteristic and performance of sandwich beams with different spacing of shear connector were evaluated under impact loading. Thin steel plates were used as top and bottom skins of the sandwich beams and plain concrete was used as the core material. Shear connectors were provided by welding of angle sections on steel plates. The sandwich beams were impacted at their midpoint by a hemi-spherical nose shaped projectile dropped from various heights. Strains on steel plates were measured to study the effects of impact velocity or impact momentum on the performance of sandwich beams. Spacing of shear connectors is found to have significant effects on the impact response of the beams.

진주조개를 모방한 생체모방 복합재료의 저속충격 해석 (Analysis of Low Velocity Impact on Biomimetic Composites Mimicking Nacre)

  • 조승운;범현규
    • Composites Research
    • /
    • 제23권4호
    • /
    • pp.1-6
    • /
    • 2010
  • 진주조개를 모방한 생체모방 복합재료의 저속충격 하에서의 동적 거동에 대해 연구하였다. 이러한 복합재료는 단백질과 미네랄 층이 계층구조를 이루고 있다. 유한요소해석을 사용하여 복합재료의 충격거동을 해석하였다. 복합재료의 계층구조가 동적 거동에 미치는 영향을 고찰하였다. 생체모방구조물은 계층구조의 차수가 높아짐에 따라 저속충격에 대해 충격지점에서 구조물이 받는 최대 응력과 변위, 접촉하중을 감소시킨다.

유한요소법에 의한 등방성과 이방성 재료의 저속 충격 해석 (Low-Velocity Impact Analyses of Isotropic and Anisotropic Materials by the Finite Element Method)

  • 안국찬;박형렬
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.9-17
    • /
    • 2001
  • The purpose of this research is to analyze the impact resposes(impulsive stress and strain etc.) of anisotropic materials subjected to the low-velocity impact. For this purpose, a beam finite element program based on modified higher-order beam theory for anisotropic materials are developed and used to simulate the dynamic behaviors [contact force, displacement of ball and target, strain(stress) response histories] according to the changes of material property, stacking sequence, velocity and dimension etc.. Test materials for simulation are composed of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s} and [90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

  • PDF

초기 면내하중을 받는 복합적층판의 저속충격거동 및 손상해석 (Low-Velocity Impact Response and Damage Analysis of Composite Laminates Under Initial In-plane Loading)

  • 최익현
    • Composites Research
    • /
    • 제22권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 본 논문에서는 면내하중을 받는 복합적층판의 저속충격거동과 손상을 해석하였다. 초기부터 존재하는 면내변형률을 고려하여 판의 변위장을 새롭게 가정하고, 이 가정된 변위장에 따른 적층판의 구조거동에 대한 유한요소방정식을 유도하였으며, 유한요소해석 프로그램을 코딩하였다. 유한요소해석을 수행하여 참고문헌의 수치해석 결과와 비교하였으며, 충격에너지는 동일하나 충격체의 질량과 속도가 다른 조건에 대해서도 해석하여 초기 면내하중의 영향을 분석하였다. 바닥으로부터 첫 번째 층간면에서의 잠재적인 층간분리 파손영역을 추정하여 초기 인내하중 및 충격조건에 따른 크기의 변화를 고찰하였다.

복합적층판의 저속충격시험 및 거동에 대한 실험적 연구 (An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.