• 제목/요약/키워드: low-velocity impact damage

검색결과 117건 처리시간 0.021초

필리멘트 와인딩 복합재 고압압력용기의 충격저항성 해석 (Analysis for Impact Damage Resistance in Filament Wound Composite Pressure Vessel)

  • 박재범;황태경;김형근;김정규;강기원
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1109-1117
    • /
    • 2005
  • To identify damage that develops in filament wound composite pressure vessels subjected to low velocity impact, a series of impact tests was performed on specimens cutting from the full scale pressure vessel. The resulting damages by the three different impactors were assessed by the scanning acoustic and metallurgical microscope. Based on the impact force history and damage, the resistance parameters were proposed and its validity in identifying the damage resistance of CFRP pressure vessel was reviewed. As the results, the impact resistance of the filament wound composites and its dependency on the impactor shape were estimated quantitatively.

난연성 복합적층재의 저속충격특성 (Low velocity Impact Characteristics of Non-flamable Composite Laminates)

  • 김재훈;김후식;조정미;박병준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.179-182
    • /
    • 2001
  • Impacter tester was build of to evaluate the characterization of non-flamable Glass/phenol laminate plates under the low velocity impact. The damage of composite laminates are matrix cracking, delamination, and fiber breakage for impact energy. In this study, this is to find impact properties of Glass/phenol in used in a forehead part of lighting subway. To determine impact damage characteristics which is made in a laminate, use the UT C-scan after- macrography. And then evaluated the reduction of strength in a rate of impact energy with CAI(Compression After Impact) test

  • PDF

A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact

  • Aghaei, Manizheh;Forouzan, Mohammad R.;Nikforouz, Mehdi;Shahabi, Elham
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1291-1303
    • /
    • 2015
  • Damage caused by low velocity impact is so dangerous in composites because although in most cases it is not visible to the eye, it can greatly reduce the strength of the composite material. In this paper, damage development in U-section glass/polyester pultruded beams subjected to low velocity impact was considered. Different failure criteria such as Maximum stress, Maximum strain, Hou, Hashin and the combination of Maximum strain criteria for fiber failure and Hou criteria for matrix failure were programmed and implemented in ABAQUS software via a user subroutine VUMAT. A suitable degradation model was also considered for reducing material constants due to damage. Experimental tests, which performed to validate numerical results, showed that Hashin and Hou failure criteria have better accuracy in predicting force-time history than the other three criteria. However, maximum stress and Hashin failure criteria had the best prediction for damage area, in comparison with the other three criteria. Finally in order to compare numerical model with the experimental results in terms of extent of damage, bending test was performed after impact and the behavior of the beam was considered.

저속충격을 받는 적층복합재료 평판의 미시구조를 고려한 interlaminar stress 거동 연구 (Interlaminar stress behavior of laminated composite plates under Low velocity Impact)

  • 지국현;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.249-252
    • /
    • 2005
  • Prediction of damage caused by low-velocity impact in laminated composite plate is an important problem faced by designers using composites. Not only the inplane stresses but also the interlaminar normal and shear stresses playa role in estimating the damage caused. The work reported here is an effort in getting better predictions of damage in composite plate using DNS approach. In the DNS model, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. Through comparison with the homogenized model. In the view of microscopic mechanics with DNS model, interlaminar stress behaviors in the inside of composite materials is investigated and compared with the results of the homogenized model which has been used in the conventional approach of impact analysis.

  • PDF

금속재와 적층복합재 면재를 갖는 샌드위치 패널의 저속충격 특성 연구 (A Study on Low-Velocity Impact Characterization of Sandwich Panels with Metal and Laminate Composite Facesheets)

  • 이재열;이상진;조세현;목재균;신광복
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.144-150
    • /
    • 2007
  • In this paper, the low velocity response of four different sandwich panels with metal and laminate composite facesheets has been investigated by conducting drop-weight impact tests using an instrumented falling-weight impact tower. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

  • PDF

라미네이트 복합재 판의 저속 충격 손상 모델링 (Modeling of Low Velocity Impact Damage in Laminated Composites)

  • 공창덕;이정환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.240-244
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate using an analytical model. The model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that occurred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

  • PDF

Modelling of Low Velocity Impact Damage In Laminated Composites

  • Lee Jounghwan;Kong Changduk;Soutis Costas
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.947-957
    • /
    • 2005
  • In this study a simple model is developed that predicts impact damage in a composite laminate avoiding the need of the time-consuming dynamic finite element method (FEM). The analytical model uses a non-linear approximation method (Rayleigh-Ritz) and the large deflection plate theory to predict the number of failed plies and damage area in a quasi-isotropic composite circular plate (axisymmetric problem) due to a point impact load at its centre. It is assumed that the deformation due to a static transverse load is similar to that oc curred in a low velocity impact. It is found that the model, despite its simplicity, is in good agreement with FEM predictions and experimental data for the deflection of the composite plate and gives a good estimate of the number of failed plies due to fibre breakage. The predicted damage zone could be used with a fracture mechanics model developed by the second investigator and co-workers to calculate the compression after impact strength of such laminates. This approach could save significant running time when compared to FEM solutions.

철도차량에 적용될 복합재료의 저속충격특성에 관한 연구 (A Study on the Impact Characteristics of the Composite Materials for Low Velocity to Be Applied a Rail Vehicle)

  • 류충현;이영신;김재훈;나재연;조정미;박병준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(II)
    • /
    • pp.851-856
    • /
    • 2002
  • In this study, the property against low velocity of the compesite material, which will be applied a rail vehicle, is shown using experiment and a finite element code. The property can be denoted the resistance of impact force, which is defined by maximum impact force over damage area. A damage propagation model is necessary to estimate accurately the impact property of a composite material through FEM code.

  • PDF

복합재 충격손상신호의 FBG센서 입사각도에 따른 주파수분포 특성에 관한 연구 (A Study on Frequency Characteristics of Impact Induced Damage Signals of Composite Laminates as the Incident Angle of an FBG sensor)

  • 방형준;송지용;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.235-239
    • /
    • 2005
  • In this research, we investigated the frequency characteristic of low-velocity impact induced damage signals on graphite/epoxy composite laminates using high-speed fiber Bragg grating(FBG) sensor system. Appling the FBG sensors to damage assessment, we need to study the response of FBG sensors as the damage signals of the different incident angles because FBG shows different directional sensitivity. In order to discriminate an impact induced damage signal from that of undamaged case, drop impacts with different energies were applied to the composite panel with different incident angle to the FBG sensor. Finally, detected impact signals were compared using frequency distributions of wavelet detail components in order to find distinctive signal characteristics of composites delamination.

  • PDF

복합재 구조물의 저속 충격 손상 및 충격 후 압축 강도 해석 (Analysis of Low Velocity Impact Damage and Compressive Strength After Impact for Laminated Composites)

  • 서영욱;우경식;최익현;김근택;안석민
    • 항공우주기술
    • /
    • 제10권1호
    • /
    • pp.183-192
    • /
    • 2011
  • 최근 항공기의 성능향상 및 경량화 등의 필요에 의해 많은 항공기 특히 소형항공기 구조물에 있어 복합재료의 사용이 증가되고 있다. 그러나 복합재료의 복잡한 기계적 거동 특성 및 파손양상 등으로 인하여 그 사용에는 많은 제한이 따르고 있는 실정이다. 복합재에 발생하는 저속충격은 외관상 드러나지는 않기 때문에 복합재 구조물을 설계하는 데 있어 매우 중요하며, 특히 충격 후 충격손상으로 야기되는 층간 분리등은 구조물의 압축강도를 현저하게 저하시킬 수 있다. 본 연구에서는 적층복합재 구조물의 저속충격에 의한 손상거동 및 충격 후 잔류압축강도를 수치적으로 예측하였다. 예측 된 충격하중 이력곡선과 충격후의 압축 강도를 시험결과와 비교하였고 잘 일치함을 확인 할 수 있었다.