• 제목/요약/키워드: low-velocity impact

검색결과 322건 처리시간 0.024초

필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구 (Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method)

  • 변종익;김종열;허석봉;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

초저상 버스 차체 적용을 위한 샌드위치 패널들의 저속충격 특성 연구 (A Study on Low-Velocity Impact Characterization of Various Sandwich Panels for the Korean Low Floor Bus Application)

  • 이재열;이상진;신광복
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.506-516
    • /
    • 2007
  • In this paper, a study on low-velocity impact response of four different sandwich panels for the hybrid bodyshell and floor structure application of the Korean low floor bus vehicle was done. Square samples of 100mm sides were subjected low-velocity impact loading using an instrumented testing machine at six energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for four different types of sandwich panels. The impact damage size and depth of the permanent indentation were measured by 3-Dimensional Scanner. Failure modes were studied by sectioning the specimens and observed under optical microscope. The impact test results show that sandwich panel with composite laminate facesheet could not observe damage mode of a permanent visible indentation after impact and has a good impact damage resistance in comparison with sandwich panel with metal aluminum facesheet.

곡률을 가진 적층복합재 구조에서의 저속충격손상 평가 (Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact)

  • 전정규;권오양
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.69-73
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact force is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. The distribution of delamination along the thickness direction of curved laminates are also different from that of flat plates. Delamination was distributed rather even]y at each interface along the thickness direction of curved laminates. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

Experimental and Numerical Simulation Studies of Low-Velocity Impact Responses on Sandwich Panels for a BIMODAL Tram

  • Lee, Jae-Youl;Shin, Kwang-Bok;Jeong, Jong-Cheol
    • Advanced Composite Materials
    • /
    • 제18권1호
    • /
    • pp.1-20
    • /
    • 2009
  • This paper describes the results of experiments and numerical simulation studies on the impact and indentation damage created by low-velocity impact subjected onto honeycomb sandwich panels for application to the BIMODAL tram. The test panels were subjected to low-velocity impact loading using an instrumented testing machine at six energy levels. Contact force histories as a function of time were evaluated and compared. The extent of the damage and depth of the permanent indentation was measured quantitatively using a 3-dimensional scanner. An explicit finite element analysis based on LS-DYNA3D was focused on the introduction of a material damage model and numerical simulation of low-velocity impact responses on honeycomb sandwich panels. Extensive material testing was conducted to determine the input parameters for the metallic and composite face-sheet materials and the effective equivalent damage model for the orthotropic honeycomb core material. Good agreement was obtained between numerical and experimental results; in particular, the numerical simulation was able to predict impact damage area and the depth of indentation of honeycomb sandwich composite panels created by the impact loading.

Transient energy flow in ship plate and shell structures under low velocity impact

  • Liu, Z.S.;Swaddiwudhipong, S.;Lu, C.;Hua, J.
    • Structural Engineering and Mechanics
    • /
    • 제20권4호
    • /
    • pp.451-463
    • /
    • 2005
  • Structural members commonly employed in marine and off-shore structures are usually fabricated from plates and shells. Collision of this class of structures is usually modeled as plate and shell structures subjected to dynamic impact loading. The understanding of the dynamic response and energy transmission of the structures subjected to low velocity impact is useful for the efficient design of this type of structures. The transmissions of transient energy flow and dynamic transient response of these structures under low velocity impact are presented in the paper. The structural intensity approach is adopted to study the elastic transient dynamic characteristics of the plate structures under low velocity impact. The nine-node degenerated shell elements are adopted to model both the target and impactor in the dynamic impact response analysis. The structural intensity streamline representation is introduced to interpret energy flow paths for transient dynamic response of the structures. Numerical results, including contact force and transient energy flow vectors as well as structural intensity stream lines, demonstrate the efficiency of the present approach and attenuating impact effects on this type of structures.

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

저속 충격하에서의 금속복합재료의 동적 특성 (Dynamic Behaviors of Metal Matrix Composites in Low Velocity Impact)

  • 남현욱;;;한경섭
    • Composites Research
    • /
    • 제12권1호
    • /
    • pp.68-75
    • /
    • 1999
  • 본 연구에서는 저속 충격에서 충격 속도에 따른 금속복합재료의 동적 거동을 연구하였다. 시험에 사용된 재료는 모재로 AC8A와 보강재로 알루미나($Al_2O_3$)와 탄소를 사용하였으며 용탕 주조법을 이용하여 금속복합재료를 제조하였다. 금속복합재료에는 15%의 부피분율을 가진 알루미나 예비성형체와 알루미나와 탄소를 각각 12%와 3% 사용한 혼합 에비성형체가 사용되었다. 제조된 금속복합재료는 인장 시험과 진동 시험을 통해 인장 강도와 탄성계수를 구하였으며, 저주파 여파기(low pass filter)와 계장화 충격 시험기를 이용하여 충격 속도에 따른 금속복합재료의 충격 거동을 연구하였다. 저주파 여파기를 이용함으로써 충격 속도에 관계없이 안정적인 실험치를 확보할 수 있었다. 충격 속도의 증가에 따라 모재와 금속복합재료의 충격에너지는 증가하였으나, 동적인성치는 일정한 값을 보였다. 충격 속도가 증가할수록 충격에너지 중 균열전파에너지의 향상이 두드러졌으며, 재료의 변형량이 증가하였다. 충격에너지 중 균열개시에너지와 동적파괴인성치의 관계를 설명하기 위하여 변형율 에너지와 노치에서의 응력 분포를 이용하여 간단한 모델을 제시하였으며, 이로부터 균열개시에너지는 동적 파괴 인성치의 자승에 비례하고 탄성계수에 반비례하는 것을 보였다.

  • PDF

바이모달 트램 적용 하니컴 샌드위치 복합재 패널의 저속 충격 해석 (Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application)

  • 이재열;정종철;신광복
    • Composites Research
    • /
    • 제20권4호
    • /
    • pp.42-50
    • /
    • 2007
  • 본 논문에서는 바이모달 트램의 차체와 바닥재 구조 재료로 적용되는 2종류의 샌드위치 패널에 대한 충격 손상을 시험과 수치해석을 통해 상호 비교하였다. 적용된 시편은 $100mm{\times}100mm$의 크기를 가지며 저속충격시험기를 사용하여 4가지 경우의 충격에너지에 대해 시험하였다. 또한, 저속충격 조건에 따라 차체 적용 샌드위치 구조물의 저속 충격 특성을 유한요소해석으로 분석하기 위해 범용 외연유한요소해석 프로그램인 LS-DYNA3D를 이용하여 특성을 분석하였다. 이때 금속재와 복합재 재료의 손상모델, 그리고 직교이방성 특성을 갖는 하니컴 재료의 유효손상모델을 제시하기 위하여 기계적 특성 시험을 수행하여 물성 파라메터를 획득하였고, 시험과 해석결과 충격 하중에 대한 샌드위치 패널의 손상 영역과 깊이를 비교적 잘 예측할 수 있음을 증명하였다.

복합재료 평판의 비선형 3차원 저속 충격 해석 (3-Dimensional Nonlinear Analysis of Low Velocity Impact On Composite Plates)

  • 김승조;지국현
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.38-42
    • /
    • 2000
  • In this study, the low velocity impact behavior of the composite laminates has been described by using 3 dimensional nonlinear finite elements. To describe the geometric nonlinearity due to large deformation, the dynamic contact problem is formulated using the exterior penalty finite element method on the base of Total Lagrangian formulation. The incremental decomposition is introduced, and the converged solution is attained by Newton-Raphson Method. The Newmark's constant-acceleration time integration algorithm is used. To make verification of the finite element program developed in this study, the solution of the nonlinear static problem with occurrence of large deformation is compared with ABAQUS, and the solution of the static contact problem with indentation is compared with the Hertz solution. And, the solution of low velocity impact problem for isotropic material is verificated by comparison with that of LS-DYNA3D. Finally the contact force of impact response from the nonlinear analysis are compared with those from the linear analysis.

  • PDF

복합적층판의 저속충격시험 및 거동에 대한 실험적 연구 (An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.