• 제목/요약/키워드: low-turbulence flow

검색결과 352건 처리시간 0.021초

후향 계단이 부착된 회전하는 실린더 주위 난류 물질전달 - 유동유발 부식 - (Turbulent Mass Transfer Around a Rotating Stepped Cylinder - Flow-Induced Corrosion -)

  • 윤동혁;양경수
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.799-806
    • /
    • 2007
  • Direct Numerical Simulation was carried out to predict mass transfer in turbulent flow around a rotating stepped cylinder. This investigation is a follow-up study of DNS of turbulent flow in Nesic et al. [Corrosion, Vol. 56, No. 10, pp. 1005 - 1014] The original motivation of this work stemmed from the efforts to design a simple device which can generate flows of high turbulence intensity at low cost for corrosion researchers. Two cases were considered; Sc=1 and 10 both at Re=335. Here, Sc and Re stand for Schmidt number and Reynolds number, respectively, based on the step height and the surface speed of the cylinder upstream of the step. Main focus was placed on the correlation between turbulence and mass transfer. The spatio-temporal evolution of concentration field is discussed. The numerical results are qualitatively compared with those of the experiment conducted with a similar flow configuration.

한양대학교 중형 아음속 풍동의 공력특성에 관한 연구 (Study on the Aerodynamic Characteristics of Hanyang Low Speed Wind Tunnel)

  • 고광철;정현성;김동화;조진수
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.92-98
    • /
    • 2003
  • 한양대학교 중형 아음속 풍동의 설계요구사항에 따라 균일도 증가 및 난류도 감소를 위한 최적설계를 수행하였다. 신뢰성 있는 풍동실험을 위해 먼저 풍동 시험부의 균일도와 난류강도 특성이 먼저 파악되어야 한다. 한양대학교 중형 아음속 풍동의 비균일도와 난류강도는 세 부분의 속도영역에서 피토관과 X형 열선프로브로 각각 측정되었다. 풍동 시험부의 유속이 증가함에 따라 비균일도가 작아졌으나 시험부의 측정단면이 확산부에 가까워질수록 비균일도가 크게 나타났다. 난류강도는 시험부 중앙에서 설계 요구조건에 비해 약간 높게 측정되었다.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

제주 동복·북촌 풍력발전단지의 바람환경 특성분석 (Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju)

  • 정형세;김연희;최희욱
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

Numerical Analysis of the Chemical Injection Characteristics Using a Low Reynolds Number Turbulence Model

  • Chang, Byong-Hoon;Chang Kyu;Park, Han-Rim
    • 에너지공학
    • /
    • 제8권1호
    • /
    • pp.110-118
    • /
    • 1999
  • In order to protect the nuclear reactor coolant system from corrosion, lithium is injected into the coolant from the chemical injection tank. The present study investigates the chemical injection characteristics of the injection tank using a low Reynolds number turbulence model. Laminar flow analysis showed very little diffusion of the jet and gave incorrect flow and concentration fields. A disk located near the inlet of the injection tank was effective in mixing the chemical additives in the top portion of the tank, and significant reduction in injection time was obtained.

  • PDF

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF

유한요소법을 이용한 연속주조공정의 연계해석 (Coupled Analysis of Continuous Casting by FEM)

  • 문창호;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.181-185
    • /
    • 2001
  • Three-dimensional finite-element-based numerical model of turbulent flow, heat transfer, macroscopic solidification and inclusion trajectory in a continuos steel slab caster was developed Turbulence was incorporated using the Improved Low-Re turbulence model with positive preserving approach. The mushy region was modeled as the porous media with average effective viscosity. A series of simulations was carried out to investigate the effects of the casting speed, the slab size, the delivered superheat the immersion depth of the SEN on the transport phenomena. In the absence of any known experimental data related to velocity profiles, the numerical predictions of the solidified profile on a caster was compared with breakouts data and a good agreement was found.

  • PDF

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II) (Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow-)

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.

좁은 수평 환형 Crevice에서의 증발열전달촉진에 관한 연구 (Study on enhancement of evaporating heat transfer in narrow horizontal annular crevices)

  • 배상철;김종수
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1481-1490
    • /
    • 1996
  • This study is intend to improve flow pattern within evaporator, which is low quality and low mass flux, by installing narrow horizontal annular crevice so that enhance heat transfer coefficient. The motive, which made to study heat transfer enhancement by using narrow annular crevice, came from capillary phenomena and pumping force of generating vapor on refrigerant boiling. Tests were run about 5 models of turbulence promoter with CFC-12, in the range of evaporating temperature (15.deg. C), mass flux (50 to 100 kg/m$\^$2/s), heat flux (3.4 to 6.7 kW/m$\^$2/), quality (0.1 to O.5). It is observed that flow pattern within evaporator is changed closely to semi-annular flow or annular flow, of which refrigerant liquid is reached to the upper side of tube by using narrow annular crevice. When the narrow annular crevice is installed in the evaporator tube, local heat transfer coefficient is generally more improved than that of smooth tube. That fact is according to observed result of flow pattern. It is learned that narrow annular crevice has more efficiency at a low mass flux. At the TP-5, enhancement of heat transfer rate is about 170% compare to that of smooth tube on a low mass flux (50 kg/m$\^$2/s), and it is about 134% on a high mass flux (100 kg/M$\^$2/S), so that we know that it is on a very high condition.