• Title/Summary/Keyword: low-temperature storage

Search Result 1,110, Processing Time 0.031 seconds

FRAPCON analysis of cladding performance during dry storage operations

  • Richmond, David J.;Geelhood, Kenneth J.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.306-312
    • /
    • 2018
  • There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to $400^{\circ}C$ for high-burnup (>45 GWd/mtU) fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at $400^{\circ}C$. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

A Design of Temperature Management System for Preventing High Temperature Failures on Mobility Dedicated Storage (모빌리티 전용 저장장치의 고온 고장 방지를 위한 온도 관리 시스템 설계)

  • Hyun-Seob Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2024
  • With the rapid growth of mobility technology, the industrial sector is demanding storage devices that can reliably process data from various equipment and sensors in vehicles. NAND flash memory is being utilized as a storage device in mobility environments because it has the advantages of low power and fast data processing speed as well as strong external shock resistance. However, flash memory is characterized by data corruption due to long-term exposure to high temperatures. Therefore, a dedicated system for temperature management is required in mobility environments where high temperature exposure due to weather or external heat sources such as solar radiation is frequent. This paper designs a dedicated temperature management system for managing storage device temperature in a mobility environment. The designed temperature management system is a hybrid of traditional air cooling and water cooling technologies. The cooling method is designed to operate adaptively according to the temperature of the storage device, and it is designed not to operate when the temperature step is low to improve energy efficiency. Finally, experiments were conducted to analyze the temperature difference between each cooling method and different heat dissipation materials, proving that the temperature management policy is effective in maintaining performance.

Changes in antioxidant activity of processed edible mushrooms stored at room temperature and low temperature (주요 식용버섯 가공원료의 상온 및 저온 저장에 따른 항산화 활성 변화)

  • An, Gi-Hong;Han, Jae-Gu;Kim, Ok-Tae;Cho, Jae-Han
    • Journal of Mushroom
    • /
    • v.19 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • This study investigated the changes in the antioxidant activity, nitrite scavenging activity, and ��-glucan content of processed raw materials (Pleurotus eryngii, Pleurotus ostreatus, Lentinula edodes, and Flammulina velutipes) brought about by storage at room temperature (20-25℃) and low temperature (4℃). The results indicated that DPPH free radical scavenging activity was the lowest in air-dried and roasted samples that were stored at room temperature, k with the exception of the air-dried samples of P. eryngii and L. edodes. For total polyphenol contents, all roasted samples of the edible mushrooms stored at room and low temperature decreased compared with the samples pre-storage, except for the air-dried samples of P. eryngii, P. ostreatus, and L. edodes. Furthermore, the ferric reducing antioxidant power and reducing power of the air-dried and roasted samples stored at room temperature and low temperature tended to increase compared to that before storage. Moreover, the ��-glucan content in the air-dried and roasted samples stored at room temperature was significantly lower compared to that before storage, as well as to that in the samples stored at low temperature (p<0.05). The results of this study may help predict the degree to which biological activities in processed edible mushrooms change when stored at room temperature and/or low temperature conditions.

Physicochemical and Microbial Characteristics of Oiji Prepared with Dry Salting Methods during Low Temperature Storage (저염 건식절임법으로 제조한 오이지의 저온저장 중 이화학적$\cdot$미생물학적 품질특성)

  • Kwon Oh-Yun;Yang Yun-Hyoung;Park Wan Soo;Kim Mee Ree
    • Korean journal of food and cookery science
    • /
    • v.21 no.4 s.88
    • /
    • pp.545-555
    • /
    • 2005
  • The physicochemical and microbial characteristics of Oiji prepared with dry salting method, which has been used industrially for industry, were investigated. Low salting and low storage temperature were employed:extremely low salting extremely low temperature; ESET $(5\%,\;0^{\circ}C)$, very low salting extremely low temperature;VSET $(10\%,\;0^{\circ}C)$, extremely low salting very low temperature; ESVT$(5\%,\;5^{\circ}C)$, low salting very low temperature; VSVT$(10\%,\;5^{\circ}C)$ and high salting low temperature;HSLT$(30\%,\;10^{\circ}C)$ for control. Acidity was lower, and pH was higher in VSET, in of which the fermentation pattern was similar with that of HSLT The time required to reach the optimum acidity ($0.3\%$ lactic acid) was longer delayed for VSET (168 days), than for compared to ESVT (51 days). During storage of Oiji, greenness (-a) as measured with of the Hunter color system wasshowed the highest in VSET, and the lowest while in ESVT, the lowest. Total microbial and lactic acid bacteria counts number were the lowest in HSLT and VSET and were the lowest than in other groups, while the highest in ESVT. Yeast was not detected in HSLT, but was the highest while in VSVT. E coli coliform and listeria were detected in the $5\%$ salting groups, although Salmonella was not detected in any of the all groups. Texture profile analysis demonstrated exhibited that fracturability and hardness were highest in HSLT and VSET, compared to the other groups. Scores of over-all preference for ESVT and HSLT were higher atwith 6.3 and 6.2, respectively, compared to the other products. Based on these results, lower saltiness less than $10\%$ and lower storage temperature (less than $5^{\circ}C$) condition was optimum for maximizing the better for good quality of industrial Oiji preparation in industry.

Low Temperature Effects on the Strength and Fracture Toughness of Membrane for LNG Storage Tank (LNG 저장탱크용 멤브레인재(STS 304강)의 강도 및 파괴인성에 미치는 저온효과)

  • Kim, Jeong-Gyu;Kim, Cheol-Su;Jo, Dong-Hyeok;Kim, Do-Sik;Yun, In-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.710-717
    • /
    • 2000
  • Tensile and fracture toughness tests of the cold-rolled STS 304 steel plate for membrane material of LNG storage tank were performed at wide range of temperatures, 11 IK(boiling point of LNG), 153K , 193K and 293K(room temperature). Tensile strength significantly increases with a decrease in temperature, but the yield strength is relatively insensitive to temperature. Elongation at 193K abruptly decreases by 50% of that at 293K, and then decreases slightly in the temperature range of 193K to 111K. Strain hardening exponents at low temperatures are about four times as high as that at 293K. Elastic-plastic fracture toughness($J_c$) and tearing modulus($T_{mat}$) tend to decrease with a decrease in temperature. The $J_c$ values are inversely related to effective yield strength in the temperature range of 111K to 293K. These phenomena result from a significant increase in the amount of transformed martensite in low temperature regions.

Low Temperature Storage of Rough Rice Using Cold-Air in Winter(I) - Storage Characteristics after Rough Rice Cooling - (겨울철 냉기를 이용한 벼의 저온저장(I) - 벼 냉각 후 저장특성 -)

  • Lee J. S.;Han C. S.;Ham T. M.;Yon K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.3 s.110
    • /
    • pp.155-160
    • /
    • 2005
  • The objective of this research was to establish a domestically available cooling storage technique by cold-air in winter, using winter cool air ventilation fur determining rough rice cooling method in the storage and dry bin. The rough rice storage characteristics of two test conditions, winter cool-air ventilation storage and ambient temperature storage, were evaluated from January to July 2001, using a storage and dry bin of 300-ton capacity. Results of this research are as follows: Grain temperature was from $-5.1\~-8.5^{\circ}C$ after winter cool-air ventilation, and grain initial temperature for ambient temperature bin storage was $0.3\~1.9^{\circ}C$. Moisture content of rough rice decreased from $0.28\;to\;0.93\%$ and from $1.53\;to\;1.92\%$ to compare with original moisture contents for winter cool-air ventilation, and for ambient temperature bin storage, respectively. Broken ratio of brown rice from winter cool-air ventilation bin increased from $0.16\;to\; 0.92\%$, and brown rice broken ratio was from $2.24\;to\;2.86\%$ for ambient temperature bin storage to compare with initial broken ratio. Hardness of stored rice increased along storage period increase in alt storage methods, and cooling bin storage increased rice hardness of 0.271kgf: this increasing was lower then the other methods from 0.059 to 2.239kgf. Germination rates were decreased approximately 9.03, 3.14 and $3.20\%$ for upper, middle, and bottom of ventilating winter air bin, respectively, and germination rates of 2.70, 3.47 and $4.14\%$ were approximately decreased for upper, middle, and bottom parts of ambient temperature bin storage, respectively.

Mathematical Model Simulations Assessing the Effects of Temperature on Residual Chlorine Concentrations in Water Storage Tanks (온도 변화에 따른 수돗물 저장 저수조 내 잔류염소에 관한 수학적 모형 시뮬레이션)

  • Noh, Yoorae;Park, Joonhong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • To ensure hygienic safety of drinking water in a water storage tank, the concentrations of residual chlorine should be above a certain regulation level. In this study, we conducted model simulations to investigate the effects of temperature on residual chlorine in water storage tank conditions typically used in Seoul. For this, values of model parameters (decomposition rate constant, sorption coefficient, and evaporation mass transfer coefficient) were experimentally determined from laboratory experiments. The model simulations under continuous flow conditions showed that the residual chlorine concentrations were satisfied the water quality standard level (0.1 mg/L) at all the temperature conditions ($5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, $20^{\circ}C$ and $25^{\circ}C$). Meanwhile, when the tanks had a no flow condition (i.e., no tap-water influent due to a sudden shut-down), the concentrations became lower than the regulatory level after certain periods. The findings from this modeling works simulating Seoul's water storage tanks suggested disappearance rate of residual chlorine could be reduced through the tanks design optimization with maintenance of low water temperature, minimization of air flow and volume, suppression of dispersion and the use of wall materials with low sorption ability.

Temperature and length of cold storage affect the Quality Maintenance of fresh kiwifruit (Actinidia chinensis Planch) (저온저장 온도 및 저장기간이 키위 "골드"의 품질 유지에 미치는 효과)

  • Yang, Yong-Joon;Lim, Byung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of temperature and length of cold storage on the quality maintenance of fresh "Gold" kiwifruit were investigated. Physio-chemical properties were analyzed in kiwifruit held at $2^{\circ}C$ and $6^{\circ}C$ temperatures compared to fruit at room temperature ($20{\sim}28^{\circ}C$) during 8 weeks of storage. Low temperatures ($2^{\circ}C$ and $6^{\circ}C$) significantly delayed softening and soluble solids content (SSC) accumulation compared to higher temperature ($20{\sim}28^{\circ}C$). Physico-chemical properties of fruits, including weight losses, firmness, SSC, titratable acidity (TA), SSC/TA ratio, and flesh color properties were monitored during storage. Fast firmness loss was detected in fruit stored at higher temperatures compared to low temperature ($2^{\circ}C$). Similar results were observed for acidity according to storage temperature and length of cold storage, whereas SSC increased to the limited values (%Brix) during storage. The soluble solids content (SSC) increased markedly during the first 60 days of storage and remained almost constant thereafter for all treatments. SSC accumulation rates decreased from 5 weeks after storage probably due to differences between initial and ripe kiwifruits, and SSC decreased with each passing week due to natural starch conversion over time. The SSC/acid ratio increased from 18 to 27 until 5 weeks after storage and then slowly declined in all kiwifruit stored at different low temperatures. Sensory evaluation results showed no differences in kiwifruit flesh color stored at two storage temperatures of $2^{\circ}C$ and $6^{\circ}C$.

Research for Development of Thermal Comfort Uniforms of Workers on a Low Temperature Storage (저온창고 작업자의 열적 쾌적성 증진을 위한 유니폼 조사 연구 - 대형 할인 마트 종사자를 대상으로 -)

  • Yoo, Hwa-Sook
    • Fashion & Textile Research Journal
    • /
    • v.12 no.4
    • /
    • pp.513-522
    • /
    • 2010
  • The aim of this study is to investigate the actual state for the development of the thermally comfortable uniform for workers on a low temperature storage. Observation, interview and survey were executed focusing on the environment, clothing, and human factors which have effects on the comfort of workers. Of 400 distributed, 253 questionnaires were analyzed through descriptives, frequency, ANOVA, t-test, multi-response analysis, correlation analysis with SPSS 12.0. The results are following. Coming and going between a selling area and cold storages, the workers showed to experience a big temperature gap. They indicated to feel cold on face and hands which were not covered by clothing and have got sick because of low temperature. The workers wanted the uniform made of functional fabrics, especially heat insulation fabrics. Female workers rather than male workers, the older, and the longer their working period were, the more uncomfortable they revealed to feel. The workers who works on the daily products part or mainly on the freezer appeared to feel cold more than any other workers. In conclusion, it was found that the uniform which consider steady state and unsteady state heat transfer together must be developed.

Drying and Low Temperature Storage System for Agricultural Products Using the Air to Air Heat Pump (I) - Drying Performance - (히트펌프를 이용한 농산물 건조 및 저온저장 시스템 (I) - 건조 성능 -)

  • Kang, Youn-Ku;Han, Chung-Su;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.20-29
    • /
    • 2007
  • Korean farmers have purchased agricultural dryer and low temperature storage system apart. In this study, the system was designed and constructed to investigate the practical application possibility of the air to air heat pump as drying and low temperature storage system for agricultural products with providing basic data. The performance and drying characteristics of the system evaluated by drying red pepper. The value of coefficient of performance of the system for heating was from 1.8 to 2.2 when ambient air temperature varied from 13$^{\circ}C$ to 23$^{\circ}C$. For operating the heat pump as dryer for drying red pepper by setting three drying air temperature of 50, 55 and 60$^{\circ}C$, specific moisture extraction rates meaning amount of energy consumption for removing moisture of 1kg from red pepper were 1.095, 1.017 and 1.094 kg$_{water}$/kWh, respectively. The drying period up to moisture ratio of 0.02 were 31, 26 and 21 hour, respectively. The lightness, redness, yellowness and chroma differences of red pepper dried by the heat pump dryer were lowered than those of red pepper dried by conventional heated air dryer except for yellowness difference at drying air temperature of 60$^{\circ}C$.