• Title/Summary/Keyword: low-rise building

Search Result 427, Processing Time 0.022 seconds

Diffusion Simulation Using Envi-Met. in Urban Planetary Boundary Layer (Envi-Met.을 이용한 도심 대기경계층 내 확산장 변화 수치 모의)

  • Choi, Hyun-Jeong
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.357-371
    • /
    • 2016
  • Buildings in the city acts as a cause of distorted wind direction, wind speed, causing the stagnation of the air flow. In the recent trend of climate change can not but consider the temperature rise of the urbanization. This study was aimed to analyze the thermal comfort of planetary boundary layer in different artificial constructions areas which has a direct impact on urban climate, and estimating the warming phenomena. Envi-met model was used to consider the urban structure associated with urban growth in order to precisely determine the impact of the building on the city weather condition. The analyzed values of thermal comfort index were temperature, wind speed, horizontal and vertical turbulent diffusivity. In particular, analysis of the PPD(Predicted Percentage of Dissatisfied) represents the human thermal comfort. In this study, by adjusting the arrangement and proportion of the top floor building in the urban it was found that the inflow of the fresh air and cooling can be derived low PPD. Vertical heat flux amount of the city caused by climate change was a factor to form a high potential temperature in the city and the accumulation of cold air does not appear near the surface. Based on this, to make the city effectively respond to climate change may require a long-term restructuring of urban spatial structure and density management.

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

A Study on the Evaluating Indicators of the Level of Deterioration in High-rise and high-density Apartments (고층고밀 아파트단지의 노후도 평가지표 개발)

  • Cho, Sung-Heui;Lee, Tae-Kyung
    • Journal of the Korean housing association
    • /
    • v.20 no.4
    • /
    • pp.131-142
    • /
    • 2009
  • High-rise and high-density apartment complexes have been built and supplied on a large scale in the 1st period of the New Town project in metropolitan areas since the late 1980s. Now It has become necessary to improve those apartment complexes, which have serious deterioration problems for aging more than about 20 years accompanying simultaneity and a large scale. The purpose of this research is to develop the evaluating indicators to measure the level of deterioration of apartments inclusively and practically in order to regenerate apartments as sustainable residential environments. This study is composed of the following four parts; (a) establishing the conceptual model of evaluation of apartment deterioration, (b) selecting evaluation items, (c) constituting evaluation measurement, and(d)weighting evaluation indicators. First, deterioration of apartments was conceptualized by physical. social, and economical aspects in terms of sustainable development and proposed the conceptual model of hierarchy structure of evaluation of apartment deterioration by literature reviews. Second, evaluating items were selected based on literature reviews of existing indicators and preceding studies about apartments of Korea and foreign countries. The evaluating indicators were identified as a total of 77 evaluating items which were composed of three dimensions and 9 attributes on the basis of the conceptual model. They cover comprehensive scope of the apartment such as unit, building, complex, and site. Third, as the measurement, the 5 point ordinal scale measure was suggested. The evaluating measurement including measure standards, measure methods, and measure contents were developed by each evaluating items. Lastly, the weighting of evaluating indicators was analyzed by AHP method conducted by survey on the expert group. Items were identified as high contributors or low contributors. The weighting of these items could suggest several evaluations according to the situation. The evaluation of the level of deterioration can be done by both total evaluation and a specific field of evaluation. In addition, it is easy to grasp deteriorated attributes or dimensions by providing a radar and bar chart showing evaluation results. These evaluating indicators could be a useful tool to grasp actual methods for the regeneration of apartments.

Design Strength of Non-symmetric Composite Column for Modular Unit Frames (모듈러 유닛 골조용 비대칭 합성기둥의 설계강도)

  • Park, Keum-Sung;Lee, Sang-Sup;Moon, Ji-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.101-109
    • /
    • 2018
  • Modular structural systems have been used increasingly for low- and mid-rise structures such as school and apartment buildings. Studies have recently been conducted on the application of the modular structural system to high-rise buildings. To provide sufficient resistances and economical construction for the high-rise modular structural system, a composite unit modular structure was proposed. In this study, the strength of the non-symmetric composite column for the proposed composite unit modular structure was investigated through a series of tests. The experimental study focused on the effect of the slenderness of the column, eccentricity, and through bars on the strength of such a column. Design equations for the non-symmetric column for a modular unit structure were also proposed. From the results, it was found that the proposed design equations provide reasonable strength prediction of the non-symmetric composite column for the modular unit structure.

A Comparative Analysis of Terrorism Threat Level of Domestic Tall Buildings and General Buildings through Rapid Visual Screening (Rapid Visual Screening통한 건물 높이별 테러위험도 비교 분석)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.89-99
    • /
    • 2011
  • As the scope of the target of terrorism is recently extending, the danger of domestic terroristic attacks is increasing constantly, and the form of terrorism is changing from hard targets such as significant facilities of the country into soft target of multi-complex buildings such as skyscrapers. Accordingly this study analyzes the terrorism threat level on skyscrapers by comparing the assessment results of the terrorism threat level on skyscrapers and high-rise buildings with the assessment results of the terrorism threat level on low-rise buildings through fema 455 - Rapid Visual Screening. As a result, skyscrapers and high-rise buildings are relatively higher threat rating than consequences and vulnerability rating. This is caused by the fact that the terrorism threat level on skyscrapers is high due to their residents and their national or regional symbolism and visibility

Structural Behavior of Reinforced Concrete Short Columns by Pseudo-Dynamic Test (유사동적실험을 이용한 철근콘크리트 단주실험에 관한 연구)

  • Min, Kyung-Min;Kim, Yong-In;Lee, Kang-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.73-76
    • /
    • 2008
  • According to the survey of earthquake disaster, low-rise reinforced concrete building larger by the extent of damage and because of the underlying distribution of reinforced concrete structures more, it is very likely to be disasters. The purpose of this study is to discuss how strength and stiffness of each system in low-rise reinforced concrete buildings consisted of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system. Generally, if shear failure members including extremely brittle failure members are failed during an earthquake, the lateral-load resisting seismic capacities of RC buildings are lower rapidly, and if the seismic capacities of shear failure members were higher than that of flexural failure members, failures of shear failure members have influence on failures of the overall system. The result of this paper will provide pseudo-dynamic test of carried out to estimate the possibility of proposals.

  • PDF

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

Classification of Local Climate Zone by Using WUDAPT Protocol - A Case Study of Seoul, Korea - (WUDAPT Protocol을 활용한 Local Climate Zone 분류 - 서울특별시를 사례로 -)

  • Kim, Kwon;Eum, Jeong-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.4
    • /
    • pp.131-142
    • /
    • 2017
  • This study aims to create a Local Climate Zone(LCZ) map of Seoul by using World Urban Database and Access Portal Tools(WUDAPT) protocol, and to analyze the characteristics of the Seoul LCZs. For this purpose, training samples of 17 LCZ types were collected by using Landsat images and Google Earth. LCZ Classification and Filtering were performed by SAGA GIS. An ArcGIS was used to analyze the characteristics of each LCZ type. The characteristics of the LCZ types were analyzed by focusing on building surface fraction ratio, impervious surface fraction ratio, pervious surface fraction ratio, building stories and air temperature. The results show that one filtering was found to be most appropriate. While Yangcheongu and Yeongdeungpogu with the higher annual and maximum mean air temperature than other areas have the higher rate of LCZ 3(compact low-rise) and LCZ 4(open high-rise), Jongnogu, Eunpyeonggu, Nowongu and Gwanakgu with the lower value have the higher rate of LCZ A(Dence trees). The values of building surface fraction ratio, impervious surface fraction ratio and building stories of each LCZ were included in the range of WUDAPT for most LCZs. However, the values of pervious surface fraction ratio were out of the range, in particular, in the LCZs 4~6 and 9~10. This study shows the usability and applicability of the WUDAPT methodology and its climate zone classification used in many countries as a basic data for the landscape planning and policy to improve the thermal environment in urban areas.

Structural Performance of 800 MPa High-Strength Steel Members and Application to Highrise and Mega Building Structures

  • Lee, Cheol-Ho
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.249-259
    • /
    • 2017
  • The use of high-strength steels in construction of highrise and mega building structures can bring about many technological advantages from fabrication to erection. However, key design criteria such as local and lateral stability in current steel design specifications were developed based on tests of ordinary steels which have stress-strain characteristics very different from that of high strength steels. A series of tests on 800 MPa tensile strength steel (HSA800) members are summarized in this paper which were conducted to investigate the appropriateness of extrapolating current ordinary-steel based design criteria to high strength steels. 800 MPa I-shape beam specimens designed according to flange local buckling (FLB) criteria of the AISC Specification developed a sufficient strength for elastic design and a marginal rotation capacity for plastic design. It is shown that, without introducing distinct and significant yield plateau to the stress-strain property of high-strength steel, it is inherently difficult to achieve a high rotation capacity even if all the current stability limits are met. 800 MPa I-shape beam specimens with both low and high warping rigidity exhibited sufficient lateral torsional buckling (LTB) strength. HSA800 short-column specimens with various edge restraint exhibited sufficient local buckling strength under uniform compression and generally outperformed ordinary steel specimens. The experimental P-M strength was much higher than the AISC nominal P-M strength. The measured residual stresses indicated that the impact of residual stress on inelastic buckling of high-strength steel is less. Cyclic seismic test results showed that HSA800 members have the potential to be used as non-ductile members or members with limited ductility demand in seismic load resisting systems. Finally, recent applications of 800 MPa high strength steel to highrise and mega building structures in Korea are briefly presented.