• 제목/요약/키워드: low-resolution encoder

검색결과 67건 처리시간 0.027초

저 분해능 엔코더를 사용한 정밀 속도 제어 (Precise Velocity Control at Low Speed with a Low Resolution Encoder)

  • 서기원;강현재;이충우;정정주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.140-142
    • /
    • 2007
  • This paper presents an effective method of precise velocity control at low speed with a low resolution encoder. Multirate observer to estimate the velocity at every DSP control period is used except a constant velocity mode. The observer corrects the estimation error when detects pulse signal. Unlike the conventional methods, the multirate estimator is stable at a low speed. However, the multirate estimator shows ripples at a constant velocity. Thus, in this paper we use a velocity prediction method which uses the present velocity from the previous average velocity to reject the ripple. In a summary, at a constant speed mode, the predicted velocity is used. Otherwise, the estimated velocity by the multirate obvserver is used. The effectiveness of the multirate observer and ripple rejection at low speed is verified through various simulations.

  • PDF

Linerly Graded Encoder for High Resolution Angle Control of SRM Drive

  • Lee, Sang-Hun;Lim, Heon-Ho;Park, Sung-Jun;Ahn, Jin-Woo;Kim, Cheul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제11B권4호
    • /
    • pp.185-192
    • /
    • 2001
  • In SRM drive, the ON·OFF angles of each phase switch should be accurately controlled in order to control the torque and speed stably. The accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor, that are used to provide the information of the rotor position and to control the SRM power circuit, respectively. However, as the speed increases, the amount of the switching angle deviation from the preset values is also increased. Therefore, the low cost encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper, As a result, a stable high speed SRM drive can be achieved by the high resolution switching angle control and it is verified from the experiments that the proposed encoder the logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

산업용 전기 차량의 저 분해능 마그네틱 엔코더를 사용한 속도 측정 방법 (Speed measurement algorithm for low-resolution magnetic encoder of industrial electric vehicle)

  • 박기형;정세종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.312-313
    • /
    • 2011
  • Recently, many industrial electric vehicles have been developed using various ac-motor drive technologies including field oriented vector control. Generally, a magnetic encoder is installed to have resistance to vibration and dust, and it is cost-effective. However, it is difficult to get an accurate rotor speed for high performance of vector control, because a resolution of the magnetic encoder is low and its phase accuracy is poor. In order to overcome this hardware problem, this study proposes a speed measurement algorithm using moving window for low-resolution magnetic encoder. This algorithm is experimentally tested and successfully applied to traction application of industrial electric vehicle.

  • PDF

산업용 전기 차량의 저 분해능 마그네틱 엔코더를 사용한 속도 측정 방법 (Speed measurement algorithm for low-resolution magnetic encoder of industrial electric vehicle)

  • 박기형;정세종
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.316-317
    • /
    • 2011
  • Recently, many industrial electric vehicles have been developed using various ac-motor drive technologies including field oriented vector control. Generally, a magnetic encoder is installed to have resistance to vibration and dust, and it is cost-effective. However, it is difficult to get an accurate rotor speed for high performance of vector control, because a resolution of the magnetic encoder is low and its phase accuracy is poor. In order to overcome this hardware problem, this study proposes a speed measurement algorithm using moving window for low-resolution magnetic encoder. This algorithm is experimentally tested and successfully applied to traction application of industrial electric vehicle.

  • PDF

Torque Ripple Reduction of a PM Synchronous Motor for Electric Power Steering using a Low Resolution Position Sensor

  • Cho, Kwan-Yuhl;Lee, Yong-Kyun;Mok, Hyung-Soo;Kim, Hag-Wone;Jun, Byoung-Ho;Cho, Young-Hoon
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.709-716
    • /
    • 2010
  • MDPS (motor driven power steering) systems have been widely used in vehicles due to their improved fuel efficiency and steering performance when compared to conventional hydraulic steering. However, the reduction of torque ripples and material cost are important issues. A low resolution position sensor for MDPS is one of the candidates for reducing the material costs. However, it may increases the torque ripple due to the current harmonics caused by low resolution encoder signals. In this paper, the torque ripple caused by the quantized rotor position of the low resolution encoder is analyzed. To reduce the torque ripples caused by the quantization of the encoder signals, the rotor position and the speed are estimated by measuring the frequency of the encoder signals. In addition, the compensating q-axis current is added to the current command so that the 6th order torque harmonic is attenuated. The reduction of torque ripples by applying the estimated rotor position and the compensated q-axis current is verified through experimental results.

선형 홀센서를 이용한 정현파 엔코더의 DSP 구현 (DSP Implementation of a Sinusoidal Encoder using linear Hall Sensor)

  • 황정호;정찬수
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.298-302
    • /
    • 2012
  • The linear encoder used in the BLAC driving circuit consists usually analog type sensor, and need signal transform from analog sinusoidal to digital one for application in the PWM algorithm that is used to control motor current. When the motor is driven in low speed, it is required many operations and higher quality DSP to convert the hole sensor signal to digital one with enough resolution. In this paper, the another method to convert that signal with enough resolution without calculation of sine function is proposed. This is very simple and have high resolution even if the motor is driving in low speed. To verify the proposed method, BLAC motor is used, and it is proved that the motor is tracking well the reference step signal in the low speed as well as in the high one.

A novel hybrid type encoder design for the position control with the high-resolution

  • Kim, Jong-Kwon;Park, Sung-Jun;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1216-1219
    • /
    • 2003
  • The position control is very important in semiconductor manufacturing devices, precision machining tools, precision measuring instruments, etc. The accuracy of measurement for the distance in these devices affect on the performance of the whole devices. Therefore, in those precision instruments, a sensing device that can measure the distance of movement with high-precision resolution is required. In this paper, a novel hybrid (digital and analog) type encoder is proposed. It is shown that from several experiments, a high-resolution angular position measurement device can be designed with a low cost incremental encoder and a DSP controller.

  • PDF

이중 광학식 회전 엔코더 구조를 이용한 고정밀도 엔코더 시스템 개발 (Development of a High-Resolution Encoder System Using Dual Optical Encoders)

  • 이세한
    • 한국정밀공학회지
    • /
    • 제24권9호
    • /
    • pp.76-85
    • /
    • 2007
  • An optical rotary encoder is easy to implement for automatic control applications. In particular, the output of the encoder has a digital form pulse, which is also easy to be connected to a popular digital controller. By using the encoder, there are various angular velocity detecting methods, M-, T-, and M/T-method. Each of them has a property of its own. They have common limitation that the angular velocity detection period is strongly subject to the destination velocity magnitude in case of ultimate low range. They have ultimate long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a dual encoder system with two encoders of normal resolution. The dual encoder system is able to keep detection period moderately at near zero velocity and even detects zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the dual encoder system validity.

Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoder

  • Kim Ju-Chan;Hwang Seon-Hwan;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Journal of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.139-145
    • /
    • 2006
  • This paper describes the ultra precise position estimation of a servomotor using a sinusoidal encoder based on Arcsine Interpolation Method for the cost reduction of circuit design. The amplitude and offset errors of the sinusoidal encoder output signals, from the encoder itself and analog signal processing procedures, are effectively compensated and on-line tuned by utilizing a low cost programmable differential amplifier without any special expensive equipment. For a theoretical evaluation of the practical resolution of this system, the relationship between the amplitude of ADC(Analog to Digital Converter) input signal errors and the anticipated resolution is also addressed. The performance of the proposed method is verified by comparing it with speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder in the experiments.

슬릿 내부 반사를 이용한 광학식 인코더의 광경로 해석 (Optical Path Analysis for the Optical Encoder using Slit Internal Reflection)

  • 권용민;권현규;박창용
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.69-77
    • /
    • 2017
  • This paper introduces an optical encoder using the reflection in the slit. The digital optical encoder is a sensor to generate a pulse according to the displacement. An optical encoder is composed of 3 parts: light source, slit plate and light-receiving element. In a conventional encoder, one slit produces one signal. The resolution of the digital optical encoder is determined by the number of slits in the encoder plate. The small slit size is most important among the factors that determine the resolution in a generic-type optical encoder. However, a small slit has low productivity and technical difficulties, so analog optical encoders have emerged as an alternative. Nonetheless, this alternative requires additional circuitry and equipment because of the noise and drafts in the analog signals. A new sensor is presented in this paper with a high resolution and a slit of the same size using the reflection in the slit. Then, the path of the light that passes through the slit ccording to the shape was analyzed, and some paths were expressed in the mathematical expressions. In addition, the optical paths were analyzed in the rectangular, octagonal, and circular encoders, and shown the obtained number of signals per slit by using them. Thus, we confirm that this method has the best performance in circle-shaped slits.