• Title/Summary/Keyword: low-power system

Search Result 5,548, Processing Time 0.037 seconds

High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation (태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Risk and Sensitivity Analysis during the Low Power and Shutdown Operation of the 1,500MW Advanced Power Reactor (1,500MW대형원전 정지/저출력 안전성향상을 위한 설계개선안 및 민감도 분석)

  • Moon, Ho Rim;Han, Deok Sung;Kim, Jae Kab;Lee, Sang Won;Lim, Hak Kyu
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • An 1,500MW advanced power reactor required the standard design approval by a Korean regulatory body in 2014. The reactor has been designed to have a 4-train independent safety concept and a passive auxiliary feedwater system (PAFS). The full power risk or core damage frequency (CDF) of 1,500MW advanced power reactor has been reduced more than that of APR1400. However, the risk during the low power and shutdown (LPSD) operation should be reduced because CDF of LPSD is about 4.7 times higher than that of internal full power. The purpose of paper is to analysis design alternatives to reduce risk during the LPSD. This paper suggests design alternatives to reduce risk and presents sensitivity analysis results.

A Study on the Performance Characteristics of Low Pressure Hydraulic Circuit of Common Rail System (커먼레일 시스템용 저압 유압회로의 성능특성에 관한 연구)

  • Lee, Choon-Tae
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.51-57
    • /
    • 2014
  • High pressure common rail injection technology has revolutionized the diesel industry. Over the last decade it has allowed engine builders to run higher injection pressures as much as above 1,300bar in order to increase engine efficiency, while reducing emissions. This common rail system has low pressure circuit which is consist of low pressure pump, cascade overflow valve and flow metering unit. The low pressure pump's purpose is to feed fuel oil to the high pressure pump. The cascade overflow valve keeps pressure in front of the metering unit constant and provides lubrication for the high pressure pump. The metering unit, known as the MPROP or fuel pressure regulator, regulates the maximum flow rate delivers to the rail. In this paper, we have investigated the performance characteristics of each components and total low pressure circuit of common rail system.

Development of a Low-cost Lighting System for Line-acan Camera (라인 스캔 카메라를 위한 저가형 시 균일 조명장치 구현)

  • Kim, Hong-Gap;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.235-240
    • /
    • 2000
  • A low cost lighting system for line-scan cameras has been developed with 3-phase power. When exposure time of line-scan camera is shorter than fluctuation period of illumination, the average gray value of each acquired 1-D image varies. Detecting defects on the objects's surface under such illuminating environment is very difficult. The proposed lighting system is composed of low-cost fluorescent lights based on 3-phase power. The specially designed lighting pack and the properly selected lighting position enable to get the rippleless lighting. The principle of the proposed lighting system has been explained analytically. The lighting system has been tested for fabric inspection with line-scan camera and it's efficacy has been proved.

  • PDF

Design of High Speed Motor for Surface Mounted Permanent Magnet (표면부착형 영구자석 초고속 회전기의 설계)

  • Song, Jae-Hong;Cha, Young-Bum;Yang, Hyun-Sub;Lee, Jeong-Jong;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.939-941
    • /
    • 2003
  • High Speed permanent magnet machines are currently being developed for a number of applications including gas turbine power plants, air conditioning systems, machine tools, gas pumps, high performance vacuum pumps, flywheel energy storage systems, aircraft fuel pumps, and so on. Using a high-speed machine eliminates the necessity of the mechanical gearbox and could certainly increase the system efficiency and reduce the total cost. In addition, a high-speed machine has the advantage of small dimension and low weight, i.e. low weight to power and volume to power ratio. This paper presents a review of some important applications (mostly still under development) where high-speed machines arc used, highlighting the advantages of the technology in each case.

  • PDF

Analysis of Low Frequency Oscillations in KEPCO System (한전 실계통에서의 저주파 동요현상 해석)

  • Song, K.Y.;Kwon, S.H.;Kim, D.Y.;Kim, Y.J.;Song, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.397-401
    • /
    • 1991
  • Low frequency oscillations have been observed in KEPCO system. This paper represents how to analyze the power system by using the AESOPS program and analyze the various factors affecting the damping characteristics of these oscillations in KEPCO system of 1986. The characteristics of load, the amount of power flow on the transmission line and the gain of exciter have a significant effects on the damping of the system while the governing system has only a minor one. With the Power System Stabilizers, the stability of the power system has been increased.

  • PDF

An Analysis of Delayed Voltage Recovery Phenomenon according to the Characteristics of Motor Load in Korean Power System (모터부하 특성에 따른 국내 전력계통의 전압 지연 회복 현상 분석)

  • Lee, Yun-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.178-182
    • /
    • 2016
  • FIDVR(Fault Induced Delayed Voltage Recovery) is a phenomenon that recovery of the system voltage level delays after the fault. Cause of FIDVR phenomenon is motor load characteristic about voltage and reactive power. In low voltage condition, the motor go to stall state that consume large amount of reactive power. As a result, the voltage recovery problem is that of repeated occurrences of sustained low voltage following faults on the system. In this paper, analysis the characteristics of the motor load. And using the korean power system actual data, perform a case studies to voltage delay recovery phenomenon alleviation method. Change of each parameters by analyzing the effect on system and selecting an influence parameter. In addition, dynamic characteristic analysis of the resulting difference in the proportion by the motor load in power systems, considering the effect on the voltage stability.

High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching (단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터)

  • Jung, S.H.;Kwon, S.K.;Suh, K.Y.;Lee, H.W.;Gac, D.K.;Kim, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF

LVRT Control Strategy of Grid-connected Wind Power System (계통 연계형 풍력 발전 시스템의 LVRT 제어 전략)

  • Shin, Ho-Joon;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.182-190
    • /
    • 2011
  • This paper proposes a LVRT (Low Voltage Ride Through) control strategy which should be satisfied by grid-connected wind power system when grid faults occur. The LVRT regulation indicates rules or actions which have to be executed according to the voltage dip ratio and the fault duration. Especially the wind power system has to support the grid with specified reactive current to secure the grid stability when voltage reduction ratio is over 10%. The LVRT regulation in this paper is based on the German Grid Code and full-scale variable speed wind power conversion system is considered for LVRT control strategy. The proposed LVRT control strategy satisfies not only LVRT regulation but also makes power balance between wind turbine and power system through additional DC link voltage regulation algorithms. Because it is impossible to control grid side power when the 3-phase to ground fault occurs, the DC link voltage is controlled by a generator side inverter using the DC link voltage control strategy. Through the simulation and experiment result, the proposed LVRT control strategy is evaluated and its effectiveness is verified.

New High Efficiency Zero-Voltage-Switching AC-DC Boost Converter Using Coupled Inductor and Energy Recovery Circuit (결합 인덕터 및 에너지 회생 회로를 사용한 새로운 고 효율 ZVS AC-DC 승압 컨버터)

  • Park, Gyeong-Su;Kim, Yun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.10
    • /
    • pp.501-507
    • /
    • 2001
  • In this paper, new high-efficiency zero voltage switching (ZVS) AC-DC boost converter is proposed to achieve power factor correction by simplifing energy recovery circuit. A lot of high power factor correction circuits have been proposed and applied to increase input power factor and efficiency. Most of these circuits may obtain unity power factor and achieve sinusoidal current waveform with zero voltage or/and zero current switching. However, it is difficult for them to obtain low cost, small size, low weight, and low noise. The topology proposed to improve these problems can compact the devices in circuit and can achieve high efficiency ZVS AC-DC boost converter. Simulation and experimental results show that this topology is capable of obtaining high power factor and increasing the efficiency of the system.

  • PDF