• Title/Summary/Keyword: low-molecular-weight-carbohydrates

Search Result 13, Processing Time 0.021 seconds

The Role of Fungal Laccase in Biodegradation of Lignin

  • Andrzej Leonowicz;Jolanta Luterek;Maria W.Wasilewska;Anna Matuszewska;M.Hofrichter;D.Ziegenhagen;Jerzy Rogalski;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.5
    • /
    • pp.1-11
    • /
    • 1999
  • Wood components, cellulose and lignin, are degraded simultaneously and the general outline for the complementary character of carbohydrates and lignin decomposition as well as the existence of enzymatic systems combining these processes is still valid. The degradatiion of free cellulose or hemicellulose into monosaccharides has long been known to be relatively simple, but the mechanism of lignin degradatiion wasn ot solved very clearly yet. Anyway the biodegradation of woold constituents is understood at present as an enzymatic process. Kigninolytic activity has been correlated with lignin and manganese peroxidases. At present the attention is paid to laccase. Laccase oxidizes lignin molecule to phenoxy radicals and quinones . This oxidation can lead to the cleavageo f C-C or C-O bonds in the lignin phenyl-propane subunits, resulting either in degradation of both side chains and aromatic rings, or in demethylation processes. The role of laccase lies in the "activation" of some low molecular weight mediators and radicals produced by fungal cultures. Such activated factors produced also in cooperation with other enzymes are probably exported to the wood environment where they work in degradation processes as the ' enzyme messengers." It is worth mentioning that only fungi possessing laccase show demethylating activity. Thus demethylation, the process important for ligninolysis, is probably caused exclusively by laccase. Under natural conditions laccase seems to work with other fungal enzymes , mediators and mediating radicals. It has shown the possibility of direct Bjrkman lignin depolymerization by cooperative activity of laccase and glucose oxidase.

  • PDF

Enhancement of Enzymatic Hydrolysis of Lignocellulosic Biomass by Organosolv Pretreatment with Dilute Acid Solution (효소당화를 위한 목질계 바이오매스의 유기용매 침출 전처리 공정)

  • Kim, Jun Beom;Kim, Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.806-811
    • /
    • 2016
  • Organosolv pretreatment is the process to frationation of lignocellulosic feedstocks to enhancement of enzymatic hydrolysis. This process has advantages that organic solvents are always easy to recover by distillation and recycled for pretreatment. The chemical recovery in organosolv pretreatment can isolate lignin as a solid material and carbohydrates as fermentable sugars. For the economic considerations, using of low-molecular-weight alcohols such as ethanol and methanol have been favored. When acid catalysts are added in organic solvent, the rate of delignification could be increased. Mineral acids (hydrochloric acid, sulfuric acid, and phosphoric acid) are good catalysts to accelerate delignification and xylan degradation. In this study, the biomass was pretreated using 40~50 wt% ethanol at $170{\sim}180^{\circ}C$ during 20~60 min. As a results, the enzymatic digestibility of 2-stage pretreatment of rigida using 50 wt% ethanol at $180^{\circ}C$ was 40.6% but that of 1-stage pretreatment was 55.4% on same conditions, therefore it is shown that the pretreatment using mixture of the organosolv and catalyst was effective than using them separately.

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.