• Title/Summary/Keyword: low-light

Search Result 4,257, Processing Time 0.033 seconds

Fruit Qualities of De-astringent Persimmon 'Fuyu' Affected by Various Light Sources under Low and High Temperatures before Storage of Harvested Fruit

  • Kim, Tae-Choon;Kim, Chul Min;Kim, Ho Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.260-267
    • /
    • 2019
  • Harvested de-astringent persimmon 'Fuyu' were treated with various lighting sources under low (3℃) and high (22℃) temperatures. The weight loss rate of fruits was lower in those with Red LED than Fluorescence and Blue LED under both temperature conditions. Hardness and soluble solid content of fruits were higher in those with 3℃ / Blue LED or mixed LED (Blue+Red LEDs). Beta-carotene and lycopene content of fruit peel were higher in those with 3℃ than 22℃ and with Red LED or light sources with mixed red wavelength under both temperatures. When the fruits treated with light and temperature were stored for 4 days under 3℃ / dark condition, the hardness of the fruits did not significant difference among the treatments. Taken together all the results, it would be best to treat it light sources mixed red wavelength under 3℃.

Effect of Light Quality on the Photorespiration in Pisum sativum L. (완두에서 광호흡에 미치는 광질의 영향)

  • 이순희
    • Journal of Plant Biology
    • /
    • v.33 no.3
    • /
    • pp.203-210
    • /
    • 1990
  • Effects of blue and red light on photorespiration in the leaf disks of pea were studied. The rate of total 14CO2 fixation was more or less higher under red light than blue light irradiation of the same quantum (94.8 $\mu$Em-2.S-1/mV). The release of 14CO2 by photorespiration was more stimulated under blue than red light. Among the photorespiratory intermediates, 14C was more incorporated ito serine under blue light than red light. However, 14C was more incorporated into glycine under red light than blue light. The incorporation of 14C into glycolate was very low under both light qualities, but higher under red light than blue light. Among the enzymes related to photorespiration, only glycolate oxidase was activated and/or synthesized by blue light irradiation. Moreover, more 14C2 was released from glycoate-1-14C under blue light than red light irradiation, but 14C2 release from glyoxylate-1-14C and glycine-1-14C showed no difference by the either light qualities. These results suggest that blue light is more effective in the photorespiratory CO2 evolution than red light. The reason is considered that glycolate is easily metabolized under blue light due to the stimulation of the glycolate oxidase activity.

  • PDF

Adaptive Denoising for Low Light Level Environment Using Frequency Domain Analysis (주파수 해석에 따른 저조도 환경의 적응적 잡음제거)

  • Yi, Jeong-Youn;Lee, Seong-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.128-137
    • /
    • 2012
  • When a CCD camera acquires images in the low light level environment, not only the image signals but also noise components are amplified by the AGC (auto gain control) circuit. Since the noise level in the images acquired in the dark is very high, it is difficult to remove noise with existing denoising algorithms that are targeting the images taken in the normal light condition. In this paper, we proposed an adaptive denoising algorithm that can efficiently remove significant noises caused by the low light level. First, the window including a target pixel is transformed to the frequency domain. Then the algorithm compares the characteristics of equally divided four frequency bands. Finally the noises are adaptively removed according to the frequency characteristics. The proposed algorithm successfully improves the quality of low light level images than the existing algorithms do.

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Optimization of μc-SiGe:H Layer for a Bottom Cell Application

  • Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.322.1-322.1
    • /
    • 2014
  • Many research groups have studied tandem or multi-junction cells to overcome this low efficiency and degradation. In multi-junction cells, band-gap engineering of each absorb layer is needed to absorb the light at various wavelengths efficiently. Various absorption layers can be formed using multi-junctions, such as hydrogenated amorphous silicon carbide (a-SiC:H), amorphous silicon germanium (a-SiGe:H) and microcrystalline silicon (${\mu}c$-Si:H), etc. Among them, ${\mu}c$-Si:H is the bottom absorber material because it has a low band-gap and does not exhibit light-induced degradation like amorphous silicon. Nevertheless, ${\mu}c$-Si:H requires a much thicker material (>2 mm) to absorb sufficient light due to its smaller light absorption coefficient, highlighting the need for a high growth rate for productivity. ${\mu}c$-SiGe:H has a much higher absorption coefficient than ${\mu}c$-Si:H at the low energy wavelength, meaning that the thickness of the absorption layer can be decreased to less than half that of ${\mu}c$-Si:H. ${\mu}c$-SiGe:H films were prepared using 40 MHz very high frequency PECVD method at 1 Torr. SiH4 and GeH4 were used as a reactive gas and H2 was used as a dilution gas. In this study, the ${\mu}c$-SiGe:H layer for triple solar cells applications was performed to optimize the film properties.

  • PDF

A Study on Image Noise Reduction Technique for Low Light Level Environment (저조도 환경의 영상 잡음제거 기술에 관한 연구)

  • Lee, Ho-Cheol;Namgung, Jae-Chan;Lee, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.283-289
    • /
    • 2010
  • Recent advance of digital camera results in that image signal processing techniques are widely adopted to railroad security management. However, due to the nature of railroad management many images are acquired in low light level environment such as night scenes. The lack of light causes lots of noise in the image, which degrades image quality and causes errors in the next processes. 3D noise reducing techniques produce better results by using consecutive sequence of images. On the other hand, they cause degradation such as motion blur if there are motions in the sequence. In this paper, we use an adaptive weight filter to estimate more accurate motions and use the result of the adaptive filter to 3D result to improve objective and subjective mage quality.

Effect of Controlled Light Environment on the Growth and Ginsenoside Content of Panax ginseng C. A. Meyer (광환경 조절이 인삼의 생육과 진세노사이드 함량에 미치는 영향)

  • Jang, In Bae;Yu, Jin;Kweon, Ki Bum;Suh, Su Jeoung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • Background: The photosynthetic efficiency cool-season, semi-shade ginseng is normal at low morning temperatures, but drops at high afternoon temperatures. Therefore, optimal plant performance would be ensured if it were possible to control daily light transmission rates (LTR). Methods and Results: Plants were grown in a controlled light environment that replicated 11 AM conditions and comparatively analyzed against plant grown under normal conditions. Growth in the controlled light environment resulted in a 2.81 fold increase in photosynthetic efficiency with no change in chlorophyll content, although LTR were high due to low morning temperatures. Increased aerial plant growth was observed in the ginseng plants adapted to the controlled light environment, which in turn influenced root weight. An 81% increase in fresh root weight (33.3 g per plant on average) was observed in 4-year-old ginseng plants grown in controlled light environment compared to the plants grown following conventional practices (18.4 g per plant on average). With regard to the inorganic composition of leaves of 4-year-old ginseng plants grown in controlled light environment, an increased in Fe content was observed, while Mn and Zn content decreased, and total ginsenoside content of roots increased 2.37 fold. Conclusions: Growth of ginseng under a favorable light environment, such as the condition which exist naturally at 11 AM and are suitable for the plant's photosynthetic activity creates the possibility of large scale production, excellent-quality ginseng.

Real-time Soft-shadow using Shadow Atlas (그림자 아틀라스를 이용한 부드러운 그림자 생성 방법)

  • Park, Sun-Yong;Yang, Jin-Suk;Oh, Kyoung-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • In computer graphics, shadows play a very important role as a hint of inter-object distance as well as themselves in terms of realism. To represent shadows, some traditional methods such as shadow mapping and shadow volume have been frequently used for the purpose. However, the rendering results are not natural since they assume the point light. On the contrary, an area light can render soft-shadows, but its computation is too burdensome due to integral over the whole light source surface. Many alternatives have been introduced, back-projection of occluder onto the light source to get visibility of light or filtering of shadow boundary by calculating size of penumbra. But they also have problems of light bleeding or ringing effects because of low order approximation, or low performance. In this paper, we describe a method to improve those problems using shadow atlas.

A Study on the LED Spotlight with a High Power using an Aspherical Optical System (비구면 광학계를 이용한 고출력 LED 스포트라이트에 관한 연구)

  • Moon, Jae-Il;Yoo, Kyung-Sun;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.487-492
    • /
    • 2012
  • In this study we researched a spotlight in LED lighting. Ordinary LED spotlight was manufactured with characterized property of traveling straightness of LED light source, but multiple use of shell type LED, a yellow band has formed caused by light source interference between the LED. Also, there was a high miscellaneous light efficiency with losing light source homogeneity and efficiency due to light source control uneasiness. The study uses aspheric reflector and aspheric lens, so we can control the light source of LED spotlight with effectively and we reached surface light source by using COB/COM for LED module. Furthermore it can change its use by a reduced scale of light system. It has been designed to make its various application from low power consumption of bicycle lamp, up to high power consumption of automobile lamps and lighthouse.

Application of Light-emitting-diodes to Annular-type Photocatalytic Reactor for Removal of Indoor-level Benzene and Toluene

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Kun-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.563-572
    • /
    • 2012
  • Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at $350^{\circ}C$ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and $650^{\circ}C$) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at $350^{\circ}C$, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at $650^{\circ}C$. As the light intensity increased from 2.4 to 3.5 MW $cm^{-1}$, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L $min^{-1}$, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.