• Title/Summary/Keyword: low-level jets

Search Result 24, Processing Time 0.023 seconds

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Observed characteristics of tropical cyclone vertical wind profiles

  • Giammanco, Ian M.;Schroeder, John L.;Powell, Mark D.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • Over the last decade substantial improvements have been made in our ability to observe the tropical cyclone boundary layer. Low-level wind speed maxima have been frequently observed in Global Positioning System dropwindsonde (GPS sonde) profiles. Data from GPS sondes and coastal Doppler radars were employed to evaluate the characteristics of tropical cyclone vertical wind profiles in open ocean conditions and at landfall. Changes to the mean vertical wind profile were observed azimuthally and with decreasing radial distance toward the cyclone center. Wind profiles within the hurricane boundary layer exhibited a logarithmic increase with height up to the depth of the wind maximum.

A Study on the Heavy Rainfall Cases Associated with Low Level Jet Inflow along the Changma Front (장마전선상에서 하층제트 유입으로 인한 집중호우에 관한 연구)

  • Choi, Ji-Young;Shin, Ki-Chang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • In general, heavy rainfall in Korea is mostly associated with inflow of 850hPa low-level jet. It transports abundant heat and moisture flux to the Changma front. In this study, synoptic characteristics of heavy rainfall in Korea from a case study is examined by classifying heavy rainfall cases with synoptic patterns, in particular distribution of upper- and low-level jets, western North Pacific high, and moisture flux. The surface and upper-level weather charts including auxiliary analysis chart and radar and satellite images obtained from the Korea Meteorological Administration, and 500hPa geopotential heights from NCEP/NCAR are used and then KLAPS is applied to understand the local atmospheric structure associated with heavy rainfall. Results show that maximum frequency in 60 heavy rainfall cases with more than 150mm/day appears in the Changma type of 43 cases (a proportion in relation to a whole is 52%) including the combined Changma types with typhoon and cyclone. As indicated in previous studies, most heavy rainfall cases are related to inflow of low-level jet. In addition, synoptic characteristics based on the analyses of weather charts, radar and satellite images, and KLAPS in heavy rainfall case of 12 July, 2009 reveal that the atmospheric vertical structure in particular equivalent potential temperature favorable for effective inflow of warm and moist southwesterly into the Changma front is linked to large potential instability and the strong convergence accompanied with low-level jet around Suwon contributes to atmospheric upsliding along the Changma front, producing heavy rainfall.

Generation mechanisms of coastal low level jets associated with baroclinicity along the Texas Gulf coast (텍사스 연안의에 의한 연안저층 제트의 생성 역학)

  • ChoiHyo
    • 한국해양학회지
    • /
    • v.20 no.2
    • /
    • pp.28-39
    • /
    • 1985
  • The driving mechanisms for low level jets(LLJ) and coastal surface maximum winds are studied with observed wind data from June, 1976 through August, 1980 at Port Aransas and Victoria, Texas, in connection with a baroclinic model. This model is developed considering the forcing functions such as the synoptic and meso-scale pressure gradient, the frictional force, and the atmospheric stability. The results show that a LLJis observed on over 95% of the occasions when a nighttime coastal wind maximum occurred. Baroclinicity generated by sloping terrain during the summertime causes the diurnal variation in the thermal field. This thermal wind component would then decrease the prevailing synoptic-scale southerly wind by day and allow it to increase at night. Nighttime atmospheric stability leads to frictional decoupling which enhances the nocturnal LLJ. At the coastal site neutral stability prevails, thus all owing downward transfer of momentum from the nocturnal LLJ and results in the nocturnal coastal surface wind maximum. The height of LLJis not uniquely related to the inversion layer, and the results of the computations using this model show a good agreement with the observations.

NUMERICAL STUDY ON COOLING CHARACTERISTICS OF MULTIPLE IMPINGING JETS INCLUDING THE EFFECT OF TURBULENCE (난류 효과를 포함한 다중 충돌 제트의 냉각 특성에 대한 수치적 연구)

  • Jeon, J.H.;Son, G.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.321-328
    • /
    • 2009
  • Free surface impinging jet on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The free surface of liquid-gas interface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further improved by employing a nonequilibrium $\kappa-\varepsilon$ turbulence model including the effect of low Reynolds number. The computations are made to investigate the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

A Study on the Characteristics of Edgetones by High-Speed Plane Jets (고속 평면제트에 의한 쐐기음의 특성 연구)

  • Kwon, Young-Pil;Lee, Geun-Hee;Jang, Wook;Kim, Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2100-2108
    • /
    • 2001
  • The impinging tones by high-speed plane jets are experimentally investigated to study the edgetone characteristics. Experiment used a slit nozzle and a wedge system to generate edgetones. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously fur edgetones and platetones by various nozzles are compared with the present edgetone data. And the condition of tone generation, the frequency ranges, the effective source point and the sound pressure level are compared and discussed. It is found that the jet speed has no diect influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidences by normalized parameters based on the slit thickness.

Characteristics of near-surface ozone distribution

  • Kim, Yoo-Keun;Lee, Hwa-Woon;Kim, Jae-Hwan;Moon, Yun-Seob;Song, Sang-Keun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.3
    • /
    • pp.127-137
    • /
    • 2000
  • This study presents an analysis of the characteristics of vertical ozone distribution near the surface using ozonesonde data(l995 to 1998), plus surface ozone and meteorological data from the Pohang region. These features were examined in detail using three case studies. The first related to episodes of high surface ozone concentrations during the Spring season when the frontogenesis between the high and low pressure associated with the upper-level jet stream was found to be located near the surface. The second was a 5-day winter period(l3 -17 December, 1997) in the Pohang province when the hourly concentrations exceeded 90 ppb on several occasions owing to low-level jets(LLJs) induced by a nocturnal stable layer. Accordingly, this explains why the high surface ozone concentrations occurred at night as the ozone was transported across the zone by a strong wind speed( over 12.5 ms .1). The third case study was ozone enhancement due to photochemical reactions. In this case, the maximum concentration of ozone exceeded 60 ppb in the summer(23 -28 August, 1997). When an ozone peak appeared within the boundary layer, the occurrence frequency of a low-level jet due to the nocturnal stable layer was about 77%, similarly the occurrence frequency of a near-surface ozone peak relative to the appearance of an LLJ was about 76%. Accordingly, there is clearly a close correlation between the occurrence of LLJs and near-surface ozone peaks.

  • PDF

Effect of Inclined Jet on Heat/Mass Transfer for Impingement/Effusion Cooling System (경사제트에 따른 충돌제트/유출냉각에서 열/물질전달 특성)

  • Hong, Sung-Kook;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.283-289
    • /
    • 2008
  • An experimental investigation was conducted to investigate the heat/mass transfer for impingement/effusion cooling system with inclined jet. Jets with inclined angle of 60 are applied to impingement/effusion cooling. At the jet Reynolds number of 10,000, the experiments were carried out for blowing ratios ranging from 0.0 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result indicates that the inclined jet causes the non-uniform and low heat/mass transfer compared to the vertical jet. At stagnation region, the peak position is shifted from the geometrical center of injection hole due to Coanda effect and its level is higher than that of vertical jet due to increase in turbulence intensity by steep velocity gradient near the stagnation region. Further, the secondary peak region disappears because the interaction between adjacent wall jets weakens. When the initial crossflow occurs, the distorted heat/mass transfer pattern appears. As the blowing ratio (crossflow rate) increases, the heat/mass transfer distributions become similar to those of the vertical jet. This is because the effect of crossflow is dominant compared to that of inclined jet under high blowing ratio $(M{\geq}1.0)$. At low blowing ratio $(M{\leq}0.5)$, averaged Sh value is 10% lower than that of vertical jet, whereas its value at high blowing ratio $(M{\geq}1.0)$ is similar to that of vertical jet.

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.