• Title/Summary/Keyword: low-frequency signal detection

Search Result 217, Processing Time 0.023 seconds

Research trends of biomimetic covert underwater acoustic communication (생체모방 은밀 수중 음향 통신 연구 동향)

  • Seol, Seunghwan;Lee, Hojun;Kim, Yongcheol;Kim, Wanjin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.227-234
    • /
    • 2022
  • Covert Underwater Communication (CUC) signals should not be detected by other unintended users. Similar to the method used in Radio Frequency (RF), covert communication technique sending information underwater is designed in consideration of the characteristics of Low Probability of Detection (LPD) and Low Probability of Intercept (LPI). These conventional methods, however, are difficult to be used in the underwater communications because of the narrow frequency bandwidth. Unlike the conventional methods of reducing transmission power or increasing the modulation bandwidth, a method of mimicking the acoustic signal of an underwater mammal is being studied. The biomimetic underwater acoustic communication mainly mimics the click or whistle sound produced by dolphin or whale. This paper investigates biomimetic communication method and introduces research trends to understand the potential for the development of such biomimetic covert underwater acoustic communication and future research areas.

Measurement of Basis Signal with HFCT for Diagnosing Partial Discharge in Middle Joint Box of 154kV Grade (154kV급 중간접속부내의 부분방전 진단을 위한 HFCT 적용 기준신호 측정연구)

  • Lee, Yong-Sung;Kim, Jung-Yoon;Lee, Kyung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.217-219
    • /
    • 2005
  • To detect partial discharge of 154kV joint box, we have made experiment by using the HFCT sensor. Generally the signals which are detected in partial discharge test of underground power transmission cable are accompanied with both noises of high voltage and noises of surrounding power cable. The most noise in near to end part of joint box is corona, beside other noises flowed from surrounding area. Partial discharge test is difficulty due to these noises. First, we test reliability on both injection of calibration signal in NJB and removal of low frequency. After that, we had analyzed frequencies by measuring signals in IJB with 300[m] distance from NJB. Also we had measured S/N ratio by using the indirected injection method of calibration signal in IJB. In this experiment, two measurement methods were difference of detection acquisition, but these had the equal frequency properties.

  • PDF

Measurement of Basis Signal with HFCT for Diagnosing Partial Discharge in Middle Joint Box of 154kV Grade (154kV급 중간접속부내의 부분방전 진단을 위한 HFCT 적용 기준신호 측정)

  • Ahn, Jong-Hyun;Yun, Ju-Ho;Choi, Yong-Sung;Park, Dae-Hee;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.04b
    • /
    • pp.75-78
    • /
    • 2007
  • To detect partial discharge of 154kV joint box, we have made experiment by using the HFCT sensor. Generally the signals which are detected in partial discharge test of underground power transmission cable are accompanied with both noises of high voltage and noises of surrounding power cable. The most noise in near to end part of joint box is corona, beside other noises flowed from surrounding area. Partial discharge test is difficulty due to these noises. First, we test reliability on both injection of calibration signal in NJB and removal of low frequency. After that, we had analyzed frequencies by measuring signals in IJB with 300[m] distance from NJB. Also we had measured S/N ratio by using the indirected injection method of calibration signal in IJB. In this experiment, two measurement methods were difference of detection acquisition, but these had the equal frequency properties.

  • PDF

Two-Port Vector Network Analysis System with a Vector Signal Channel (벡터 전압 수신기를 이용한 2-포트 산란 계수 분석 시스템)

  • Lee, Dong-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.541-548
    • /
    • 2013
  • This paper presents a vector network analysis system for 2-port scattering parameters of microwave devices using some basic microwave instruments/devices such as signal generators, vector voltmeter, directional couplers and frequency mixers. The analytical model and implementation method for scattering parameter measurements - which can replace the vector network analyzers - are presented. The performance of the implemented system is evaluated through 1- and 2-port scattering parameter measurements, respectively. The vector volt signals which determine the scattering parameters are detected in two distinct methods depending on the frequency band of interests; a direct-detection method with a single signal generator and vector voltmeter for relatively low band and a heterodyne method to frequency down-mix associated with an additional signal source as well as frequency mixers for high band are used, respectively. Using these two methods, scattering parameters of UHF and X bands are evaluated and their performances are verified through a comercial vector network analyzer.

X-Band FMCW RADAR Signal Processing for small ship (소형선박용 X-Band FMCW 레이더 신호처리부 설계 및 구현)

  • Kim, Jeong-Yeon;Chong, Kil-To;Kim, Tae-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3121-3129
    • /
    • 2009
  • Conventional marine radar systems utilize pulse radar which is capable of high-power transmissions and is effective for remote detection purposes. A pulse radar is most commonly used on medium or large vessels due to its expensive installation and maintenance costs. I propose the use of a Frequency Modulated Continuous Wave (FMCW) radar system operated at low-power and high-resolution instead of the conventional pulse-radar based system. The transmitted and received signals of the FMCW radar system were theoretically analyzed and radar signal processing design and simulation experiments were performed to detect the range and speed. Intermediate Frequency (IF) signal mixed with virtual transmit and receive signals were generated to perform FMCW radar signal processing simulations where the IF signal underwent noise reduction through a lowpass filter. The maximum frequency was derived through the sample interval of the FFT size instead of using A/D converter. This maximum frequency was used to get the frequency range and frequency speed which were in turn used to calculate the range and speed. The virtual beat frequency generated using MATLAB is utilized to analyze the beat frequency used in the actual FMCW radar system signal processing. The differences in the range and speed of the beat frequency signals are processed and analyzed.

Damage detection of nonlinear structures with analytical mode decomposition and Hilbert transform

  • Wang, Zuo-Cai;Geng, Dong;Ren, Wei-Xin;Chen, Gen-Da;Zhang, Guang-Feng
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • This paper proposes an analytical mode decomposition (AMD) and Hilbert transform method for structural nonlinearity quantification and damage detection under earthquake loads. The measured structural response is first decomposed into several intrinsic mode functions (IMF) using the proposed AMD method. Each IMF is an amplitude modulated-frequency modulated signal with narrow frequency bandwidth. Then, the instantaneous frequencies of the decomposed IMF can be defined with Hilbert transform. However, for a nonlinear structure, the defined instantaneous frequencies from the decomposed IMF are not equal to the instantaneous frequencies of the structure itself. The theoretical derivation in this paper indicates that the instantaneous frequency of the decomposed measured response includes a slowly-varying part which represents the instantaneous frequency of the structure and rapidly-varying part for a nonlinear structure subjected to earthquake excitations. To eliminate the rapidly-varying part effects, the instantaneous frequency is integrated over time duration. Then the degree of nonlinearity index, which represents the damage severity of structure, is defined based on the integrated instantaneous frequency in this paper. A one-story hysteretic nonlinear structure with various earthquake excitations are simulated as numerical examples and the degree of nonlinearity index is obtained. Finally, the degree of nonlinearity index is estimated from the experimental data of a seven-story building under four earthquake excitations. The index values for the building subjected to a low intensity earthquake excitation, two medium intensity earthquake excitations, and a large intensity earthquake excitation are calculated as 12.8%, 23.0%, 23.2%, and 39.5%, respectively.

A Study on the Technique of Spectrum Flattening for Improved Pitch Detection (개선된 피치검출을 위한 스펙트럼 평탄화 기법에 관한 연구)

  • 강은영;배명진;민소연
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.310-314
    • /
    • 2002
  • The exact pitch (fundamental frequency) extraction is important in speech signal processing like speech recognition, speech analysis and synthesis. However the exact pitch extraction from speech signal is very difficult due to the effect of formant and transitional amplitude. So in this paper, the pitch is detected after the elimination of formant ingredients by flattening the spectrum in frequency region. The effect of the transition and change of phoneme is low in frequency region. In this paper we proposed the new flattening method of log spectrum and the performance was compared with LPC method and Cepstrum method. The results show the proposed method is better than conventional method.

Performance evaluation of 80 GHz FMCW Radar for level measurement of cryogenic fluid

  • Mun, J.M.;Lee, J.H.;Lee, S.C.;Sim, K.D.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.56-60
    • /
    • 2021
  • The microwave Radar used for special purposes in the past is being applied in various areas due to the technological advancement and cost reduction, and is particularly applied to autonomous driving in the automobile field. The FMCW (Frequency Modulated Continuous Wave) Radar can acquire level information of liquid in vessel based on the beat frequency obtained by continuously transmitting and receiving signals by modulating the frequency over time. However, for cryogenic fluids with small impedance differences between liquid medium and gas medium, such as liquid nitrogen and liquid hydrogen, it is difficult to apply a typical Radar-based level meter. In this study, we develop an 80 GHz FMCW Radar for level measurement of cryogenic fluids with small impedance differences between media and analyze its characteristics. Here, because of the low intrinsic impedance difference, most of the transmitted signal passes through the liquid nitrogen interface and is reflected at the bottom of the vessel. To solve this problem, a radar measurement algorithm was designed to detect multiple targets and separate the distance signal to the bottom of the vessel in order to estimate the precise position on the liquid nitrogen interface. Thereafter, performance verification experiments were performed according to the liquid nitrogen level using the developed radar level meter.

A Position Control of BLDC Motor in a Rail Guided System for the Un-maned Facility Security (무인 설비 감시용 레일 가이드 구동장치에서 BLDC 전동기의 위치 제어)

  • Bae, Jong-Nam;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.223-230
    • /
    • 2017
  • A low-cost BLDC motor with hall sensor is used to drive the position control of a facility security monitoring system in this paper. Low measurable frequency of the hall sensor signal in low-speed regions results in difficulty in obtaining accurate speed detection and position control. To improve system control performance, we propose a variable gain of position controller and stop mode control scheme according to the motor speed and error position with pre-set deceleration time. The proposed stop mode control scheme is activated around the stop position to forcibly move the BLDC motor to the stop position in low speed. In the proposed stop mode, the motor current is controlled by the actual speed with the reference rotating angle. The control performance of the proposed position control is verified through experiments at the actual rail guided facility security monitoring system.

A New Method of Health Monitoring for Press Processing Using AE Sensor (음향방출센서를 이용한 프레스공정에서의 새로운 건전성 평가 연구)

  • Jeong, Soeng-Min;Kim, JunYoung;Jeon, Kyung Ho;Hong, SeokMoo;Oh, Jong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.249-255
    • /
    • 2020
  • This study developed the health monitoring method of press process using the acoustic emission (AE) sensor and high-pass filter. Also, the AE parameters such as ring-down count and peak amplitude are used. Based on this AE signal, the AE parameters were acquired and was utilized to detect the crack of the specimen. Since the defect detection is difficult due to noise and low magnitude of signal, the signal noise and press operation frequency were checked through the Short Time Fourier Transform(STFT) and damped. High-pass Filtering data was applied to AE parameters to select effective parameters. By using this signal processing techniques, the proposed AE parameters could improve the performance of defect detection in the press process.