• Title/Summary/Keyword: low-fat fermented sausages

Search Result 4, Processing Time 0.018 seconds

Effect of Fat Level and the Ripening Time on Quality Traits of Fermented Sausages

  • Yim, Dong-Gyun;Jang, Kyoung-Hwan;Chung, Ku-Young
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.119-125
    • /
    • 2016
  • The objective of this study was to investigate the effect of the fat reduction on the physicochemical and microbiological characteristics of fermented sausages during ripening and drying. Low fat fermented sausages were produced with different fat levels (30%, 20%, 10%, and 5%) under ripening conditions and fermented process. Samples from each treatment were taken for physicochemical and microbiological analyses on the 0, 1, 2, 3, 4, 5, 7, 10, 14, and 21st day of ripening. In proximate analysis, the fat reduction in sausages produced an increase in moisture, protein and ash contents during ripening and drying (p<0.05). The weight losses were significantly higher in high fat formulations during the first 4 days, whereas those were higher in low fat ones after 10 days of storage (p<0.05). Fat reduction was responsible for an increase in shear force values after 3 days of storage. The volatile basic nitrogen (VBN) value of the low fat samples was significantly higher (p<0.05). Low fat sausages reduced the extent of lipid oxidation. The lower fat level produced redder sausages. Total plate bacteria and Pseudomonas counts of sausages showed no significant differences. Production of low fat sausages resulted in the physicochemical and microbiological attributes equal to or better than the high fat sausages without negative effects, except only a higher VBN and weight loss.

Utilization of Probiotic Starter Cultures for the Manufacture of Low-fat Functional Fermented Sausages (저지방 기능성 발효소시지의 제조를 위한 복합 유산균주의 이용)

  • Kim, Young-J.;Lee, Hong-C.;Park, Sung-Y.;Park, Sun-Y.;Oh, Se-Jong;Chin, Koo-B.
    • Food Science of Animal Resources
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • This study was performed to evaluate the physico-chemical properties of fermented sausages containing probiotic starter cultures (LK-30 plus, Lactobacillus plantarum 155 and 167, and Pediococcus damnosus L12) with reduced fat levels, and to determine the optimum condition for the manufacture of these products. Although low-fat fermented sausages were reduced fat content at the amount of 90% and the ripening time by 1-2 weeks, as compared to regular-fat counterpart, they became harder and had many winkles outside due to the extreme drying. In addition, fat level in fermented sausages affected the composition and shear force values. During ripening, pH, lightness and yellowness values tended to decrease, however, microbial counts of inoculated lactic acid bacteria were increased up to $10^8-10^9cfu/g$ within 3 days and remained constant thereafter. Low-fat fermented sausages had higher microbial counts than regular-fat ones. Although the inoculated probiotic starter cultures alone had the functional properties, such as cholesterol reduction, anti-high blood pressure and antimicrobial activity, they did not have distinctive characteristics in the fermented sausages. Based on these results, the low-fat fermented sausages were successfully manufactured, but a little bit increased fat level and improved functional properties in the fermented sausages would be required to have better quality as compared to regular-fat counterparts.

Changes in Flavor Components during Ripening of Fermented Sausages (발효소시지의 숙성에 따른 풍미성분의 변화)

  • 양종범
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.380-386
    • /
    • 1999
  • Fermented sausages inoculated with starter cultures which were combined Lactobacillus curvatus and Staphylococcus carnosus(LCSC), Lactobacillus plantarum and Staphylococcus carnosus(LPSC) were manufac-tured. changes in chemical composition salinity weight loss fatty acids inosine monophosphate(IMP) and hypoxanthine (Hx) and fee amino acids during ripening of fermented sausages were investigated. Due to drying the water content was decreased while the protein and fat contents salinity and weight low were increased during ripening. No significant differences between LCSC and LPSC were found for chemical composition salinity and weight loss. During ripening unsaturated fatty acid contents was dec-reased while saturated fatty acid contents was increased. At the end of the ripening the levels of mon-oenes were slightly higher in the LPSC than in the LCSC. In both treatments IMP contents were dec-reased but no changes were observed in Hx contents during ripening. Due to ripening the increase in total and individual free amino acids were observed and contents of glutamic acid alanine leucine and lysine were greatly increased.

  • PDF

Partial replacement of pork backfat with konjac gel in Northeastern Thai fermented sausage (Sai Krok E-san) to produce the healthier product

  • Sorapukdee, Supaluk;Jansa, Sujitta;Tangwatcharin, Pussadee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1763-1775
    • /
    • 2019
  • Objective: The influence of konjac gel level on fermentation process and product qualities were assessed to evaluate the feasibility of using it as fat analog in Northeastern Thai fermented sausage (Sai Krok E-san). Methods: Five treatments of fermented sausages were formulated by replacing pork backfat with 0%, 7.5%, 22.5%, and 30% konjac gel. The changes in lactic acid bacteria (LAB) and important physicochemical properties of samples were assessed during 3 days of fermentation. After the end of fermentation at day 3, water activity ($a_w$), instrumental texture, color, microbial counts, and sensory evaluation were compared. The best product formulation using konjac for replacing pork back fat were selected and used to compare proximate composition and energy value with control sample (30% pork backfat). Results: An increase in konjac gel resulted in higher values of LAB, total acidity, and proteolysis index with lower pH and lipid oxidation during 3 days of product fermentation (p<0.05). It was noted that larger weight loss and product shrinkage during fermentation was observed with higher levels of konjac gel (p<0.05). The resulting sausage at day 3 with 15% to 30% konjac gel exhibited higher hardness, cohesiveness, gumminess, springiness, and chewiness than control (p<0.05). The external color of samples with 22.5% to 30% konjac gel were redder than others (p<0.05). Mold, Salmonella spp., Staphylococcus aureus, and Escherichia coli in all finished products were lower than detectable levels. Product with 15% konjac gel had the highest scores of sourness linking and overall acceptability (p<0.05). Conclusion: The product with 15% of konjac gel was the optimum formulation for replacing pork backfat. It had higher sensorial scores of sourness and overall acceptability than control with less negative impact on external appearance (product shrinkage) and weight loss. Moreover, it provided 46% fat reduction and 32% energy reduction than control.