• Title/Summary/Keyword: low-dam series

Search Result 14, Processing Time 0.028 seconds

Studies on Effects of Channel Bed Fixation by Erosion Control Dams in Torrential Streams (황폐계류(荒廢溪流)에 있어서 사방시설물(砂防施設物)에 의한 하도고정(河道固定)에 관한 연구(硏究))

  • Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.269-277
    • /
    • 1990
  • In planning the disaster prevention by the erosion control facilities, it is essential to focus on the microtopography of the channel bed and the chronological process of sedimental movement in the torrential streams. For this purpose, the microtopographical change of the channel bed and the effects of the erosion control facilities in the mountain torrents were analyzed by the experimental channel and the field survey of the torrents where low-dam series had been constructed in the channel. The results of this experiment showed that the effects of construction of the low-dam series on the channel bed fixiation were the prevention of the local scouring in the experimental channel and the expansion of flow channel width and deposit space. The results are summarized as follows : 1. When the low-dam series were constructed over the whole channel bed (L'/L=1), the conning water and the sediment were seperated, simultaneously resulting in deposition of sediment and reduction of the tractive force for the running water. Therefore, the F.A. (Fluctuation area in cross-section: value was decreased to about 65% compared with that of non-work (L'/L=0). 2. The efficiencies of the low-dam series on the channel width were increased with an increment in length of working space. After the construction of low-dam series on the whole channel bed (L'/L=1), flow channel width was increased to about 1.53 times compared with that of non-work (L'/L=0). 3. It needs a deposition area to store the sediment with decrease in tractive force. The low-dam series in the experimental channel widened the deposition area about 2.10 times compared with that of non-work.

  • PDF

Low Flow Frequency Analysis of Steamflows Simulated from the Stochastically Generated Daily Rainfal Series (일 강우량의 모의 발생을 통한 갈수유량 계열의 산정 및 빈도분석)

  • Kim, Byeong-Sik;Gang, Gyeong-Seok;Seo, Byeong-Ha
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.265-279
    • /
    • 1999
  • In this study, one of the techniques on the extension of low flow series has been developed, in which the daily streamflows were simulated by the Tank model with the input of extended daily rainfall series which were stochastically generated by the Markov chain model. The annual lowest flow serried for each of the given durations were formulated form the simulated daily streamflow sequences. The frequency of the estimated annual lowest flow series was analyzed. The distribution types to be used for the frequency analysis were two-parameter and three-parameter log-normal distribution, two-parameter and three-parameter Gamma distribution, three-parameter log-Gamma distribution, Gumbel distribution, and Weibull distribution, of which parameters were estimated by the moment method and the maximum likelihood method. The goodness-of-fit test for probability distribution is evaluated by the Kolmogorov-Sminrov test. The fitted distribution function for each duration series is applied to frequency analysis for developing duration-low flow-frequency curves at Yongdam Dam station. It was shown that the purposed technique in this study is available to generate the daily streamflow series with fair accuracy and useful to determine the probabilistic low flow in the watersheds having the poor historic records of low flow series.

  • PDF

Estimation of Cumulative Monthly Inflow of Dam Using Frequency Analysis (빈도분석에 의한 댐의 누가월유입량 산정)

  • Maeng, seung-jin;Lee, hyeon-gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.755-758
    • /
    • 2007
  • For a stable water supply, it is necessary to consider the present unusual change in the weather, seasonal variation of water use, and the frequency and duration of low flow. Therefore, in this study, a theoretical background of specific probability distribution type and the reliability of frequency analysis for the time series of low flow data was investigated and programmed to support the operation of multipurpose dam.

  • PDF

The performance evaluation of dam management by using Granger causal analysis (그랜저 인과분석을 통한 댐관리 성과평가)

  • Cho, Sung-Min;Yoo, Myoung-Kwan;Lee, Deokro
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.135-144
    • /
    • 2021
  • This paper attempted to find implications for water resource management and water quality improvement by analyzing the causal relationship among discharge, water temperature and pollution index, which were expected to have a great effect on water quality with the rise of water temperature and precipitation change as the warming effect in recent years. For this purpose, the unit root test, cointegration test, and Granger causal test were carried out for 10 multi-purpose dams in Korean major water systems using time series data on discharge, water temperature, BOD, COD and DO. It was analyzed that the fluctuation of water temperature affected the pollution index more than the fluctuation of discharge volume. Also, Hapcheon dam and Chungju dam were the best water quality management dams based on the high causal relationship between water quality and discharge. The second rank was Daecheong dam. The third-ranking group were Yongdam and Andong dam, whose causal relationships between water quality and discharge were low. The last group were the remaining five dams.

Impacts on Water Surface Level of the Geum River with the Diversion Tunnel Operation for Low Flow Augmentation of the Boryong Dam (금강-보령댐 도수터널 운영에 따른 금강 본류 내 수위 영향 분석 연구)

  • Jang, Suk-Hwan;Oh, Kyoung-Doo;Oh, Ji-Hwan
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1031-1043
    • /
    • 2017
  • Recently severe drought caused the water shortage around the western parts of Chungcheongnamdo province, South Korea. A Diversion tunnel from the Geum river to the Boryong dam, which is the water supply dam for these areas has been proposed to solve this problem. This study examined hydraulic impacts on the Geum river associated with the diversion plan assuming the severe drought condition of 2015 would persist for the simulation period of 2016. The hydraulic simulation model was verified using hydrologic and hydraulic data including hourly discharges of the Geum river and its 8 tributaries, fluctuation of tidal level at the mouth of the river, withdrawals and return flows and operation records of the Geum river barrage since Feb. 1, 2015 through May 31, 2015. For the upstream boundary condition of the Geum river predicted inflow series using the nonlinear regression equation for 2015 discharge data was used. In order to estimate the effects of uncertainty in inflow prediction to the results total four inflow series consisting of upper limit flow, expected flow, lower limit flow and instream flow were used to examine hydraulic impacts of the diversion plan. The simulation showed that in cases of upper limit and expected flows there would be no problem in taking water from the Geum river mouth with a minimum water surface level of EL(+) 1.44 m. Meanwhile, the simulation also showed that in cases of lower limit flow and instream flow there would be some problems not only in taking water for water supply from the mouth of the Geum river but also operating the diversion facility itself with minimum water surface levels of EL(+) 0.94, 0.72, 0.43, and 0.14 m for the lower limit flow without/with diversion and the instream flow without/with diversion, respectively.

Influence of Atmospheric Stability and Topography on the Wind Direction Fluctuations (대기안정도(大氣安定度)와 지형조건(地形條件)에 따른 풍향변동폭(風向變動幅)의 특성(特性))

  • Kim, Yong Goog;Lee, Chong Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.138-145
    • /
    • 1992
  • Dependence of the standard deviation of wind direction fluctuations, ${\sigma}_{\theta}$, on atmospheric stability, averaging time and topography were analysed with the data measured at three sites, Youngjongdo beach of the Yellow Sea, Chuncheon basin and Doam-Dam valley. The results show that the mean value of ${\sigma}_{\theta}$ is large in complex terrain, the Doam-Dam site. It is notable that the large value of ${\sigma}_{\theta}$ at night is associated with the low wind speed and the strong stable condition. In order to study the long-period fluctuations of the wind direction, ${\sigma}_{\theta}$ for longer than 10 minutes averaging time was further analysed using the data obtained at the Chuncheon basin. At the averaging time shorter than 60 minutes, larger ${\sigma}_{\theta}$ is associated with longer averaging time in the strong stable condition. However, ${\sigma}_{\theta}$ was not affected significantly by wind speed and averaging time in neutral conditions. The results of the spectrum analysis for the time series data of wind direction showed that low-frequency fluctuations ranging from 10 to 60 minutes were dominated at the Chuncheon basin in strong stable condition.

  • PDF

A Probabilistic Determination of the Active Storage Capacity of A Reservoir Using the Monthly Streamflows Generated by Stochastic Models (월유하량(月流下量)의 추계학적(推計學的) 모의발생자료(模擬發生資料)를 사용(使用)한 저수지(貯水池) 활용(活用) 저수용량(貯水容量)의 확률론적(確率論的) 결정(決定))

  • Yoon, Yong Nam;Yoon, Kang Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.63-74
    • /
    • 1986
  • A methodology for the probabilistic determination of active storage capacity of an impounding reservoir is proposed with due considerations to the durations and return periods of the low flow series at the reservoir site. For more reliable probabilistic analysis the best-fit stochastic generation model of Monte Carlo type was first selected for the generation of monthly flow series, the models tested being the Month Carlo Model based on the month-by-month flow series (Monte Carlo-A Type), Monte Carlo Model based on the standardized sequential monthly flow series (Monte Carlo-B Type), and the Thomas-Fiering Model. Monte Carlo-B Model was final1y selected and synthetic monthly flows of 200 years at Hong Cheon dam site were generated. With so generated 200 years' monthly flows partial duration series of low flows were developed for various durations. Each low flow series was further processed by a nonsequential mass analysis for specified draft rates. This mass analysis furnished the storage-draft-recurrence interval relationship which gives the reservoir storage requirement for a specified water demand from the reservoir during a drought of given return period. Illustrations are given on the application of these results in analyzing the water supply capacity of a particlar reservoir, existing or proposed.

  • PDF

Strength variation of cemented sand due to wetting (수침이 고결모래의 강도에 미치는 영향)

  • Park, Sung-Sik;Kim, Ki-Young;Kim, Chang-Woo;Choi, Hyun-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.511-518
    • /
    • 2009
  • In this study, by the consideration of in situ curing conditions, cemented sand with cement ratio less than 20% is prepared by air dry condition and then wetted. A series of unconfined compression tests are carried out to evaluate the effect of wetting on the strength of cemented soils. Strength of air dry cured specimen drops to maximum 30% after wetting at the end of curing period when cement ratio is low. However, regardless of cement ratio, strength of repetitively wetted specimens during curing increases as the number of wetting increases. The results of this study can predict the strength variation of cemented sand depending on wetting conditions in the field, which can guarantee the safety of geotechnical structures such as dam.

  • PDF

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.

Impact Assessment of Climate Change on Hydrologic Components and Water Resources in Watershed (기후변화에 따른 유역의 수문요소 및 수자원 영향평가)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Kim Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.143-148
    • /
    • 2005
  • The main purpose of this study is to suggest and evaluate an operational method for assessing the potential impact of climate change on hydrologic components and water resources of regional scale river basins. The method, which uses large scale climate change information provided by a state of the art general circulation model(GCM) comprises a statistical downscaling approach and a spatially distributed hydrological model applied to a river basin located in Korea. First, we construct global climate change scenarios using the YONU GCM control run and transient experiments, then transform the YONU GCM grid-box predictions with coarse resolution of climate change into the site-specific values by statistical downscaling techniques. The values are used to modify the parameters of the stochastic weather generator model for the simulation of the site-specific daily weather time series. The weather series fed into a semi-distributed hydrological model called SLURP to simulate the streamflows associated with other water resources for the condition of $2CO_2$. This approach is applied to the Yongdam dam basin in southern part of Korea. The results show that under the condition of $2CO_2$, about $7.6\% of annual mean streamflow is reduced when it is compared with the observed one. And while Seasonal streamflows in the winter and autumn are increased, a streamflow in the summer is decreased. However, the seasonality of the simulated series is similar to the observed pattern and the analysis of the duration cure shows the mean of averaged low flow is increased while the averaged wet and normal flow are decreased for the climate change.

  • PDF