• 제목/요약/키워드: low-complexity proteins

검색결과 7건 처리시간 0.026초

Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function

  • Chujo, Takeshi;Hirose, Tetsuro
    • Molecules and Cells
    • /
    • 제40권12호
    • /
    • pp.889-896
    • /
    • 2017
  • Nuclear bodies are subnuclear, spheroidal, and membraneless compartments that concentrate specific proteins and/or RNAs. They serve as sites of biogenesis, storage, and sequestration of specific RNAs, proteins, or ribonucleoprotein complexes. Recent studies reveal that a subset of nuclear bodies in various eukaryotic organisms is constructed using architectural long noncoding RNAs (arcRNAs). Here, we describe the unifying mechanistic principles of the construction and function of these bodies, especially focusing on liquid-liquid phase separation induced by architectural molecules that form multiple weakly adhesive interactions. We also discuss three possible advantages of using arcRNAs rather than architectural proteins to build the bodies: position-specificity, rapidity, and economy in sequestering nucleic acid-binding proteins. Moreover, we introduce two recently devised methods to discover novel arcRNA-constructed bodies; one that focuses on the RNase-sensitivity of these bodies, and another that focuses on "semi-extractability" of arcRNAs.

Solution NMR spectroscopy for investigation of liquid-liquid phase separation

  • Saio, Tomohide;Okumura, Masaki;Lee, Young-Ho
    • 한국자기공명학회논문지
    • /
    • 제24권2호
    • /
    • pp.47-52
    • /
    • 2020
  • Liquid-liquid phase separation (LLPS) of biomolecules, a newly-found phase behavior of molecules in the liquid phase, has shown to its relationship to various biological function and misfolding diseases. Extensive studies have increasingly revealed a general mechanism of LLPS and characterized the liquid droplet; ho wever, intermolecular interactions of proteins and structural states of LLPS-inducing proteins inside of the droplet remain largely unknown. Solution NMR spectroscopy has emerged as a powerful approach as it provides invaluable information on protein intermolecular interactions and structures at the atomic and residue level. We herein comprehensively address useful techniques of solution NMR including the effect of paramagnetic relaxation enhancement for the study on the LLPS and droplet based on recent studies.

Surfactant-Associated Proteins의 유전인자 발현 (Gene Expression of Surfactant-Associated Proteins)

  • 박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제38권3호
    • /
    • pp.228-235
    • /
    • 1991
  • Pulmonary surfactant is a lipoprotein complex composed primarily of phospholipid and lungspecific apoproteins that reduces surface tension in the alveolus and maintains alveolar stability at low lung volume. Three families of lung-specific apoproteins have been described: SP-A, a glycoprotein with a reduced molecular weight of 28~36 KDa. SP-B a hydrophobic protein with a nonreduced molecular weight of 18 KDa, and SP-C a hydrophobic protein with a non-reduced molecular weight of 5~8 KDa. Surfactant proteins have important roles in regulating surfactant metabolism as well as in determining its physical properties. The synthesis of the active surfactant peptides appears to be modulated by system with considerable complexity, including numerous levels of regulation such as cell-specific, hormonal and developmental controls. Endotoxin appears to alter surfactant protein mRNAs differentially. It is hoped that the elucidation of the factors controlling the synthesis and metabolism of the surfactant proteins will aid in understanding the pathogenesis of hyaline membrane disease and offer new avenues for the therapy and diagnosis of ther pulmonary disorders as well.

  • PDF

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Immunosignature: Serum Antibody Profiling for Cancer Diagnostics

  • Chapoval, Andrei I;Legutki, J Bart;Stafford, Philip;Trebukhov, Andrey V;Johnston, Stephen A;Shoikhet, Yakov N;Lazarev, Alexander F
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4833-4837
    • /
    • 2015
  • Biomarkers for preclinical diagnosis of cancer are valuable tools for detection of malignant tumors at early stages in groups at risk and screening healthy people, as well as monitoring disease recurrence after treatment of cancer. However the complexity of the body's response to the pathological processes makes it virtually impossible to evaluate this response to the development of the disease using a single biomarker that is present in the serum at low concentrations. An alternative approach to standard biomarker analysis is called immunosignature. Instead of going after biomarkers themselves this approach rely on the analysis of the humoral immune response to molecular changes associated with the development of pathological processes. It is known that antibodies are produced in response to proteins expressed during cancer development. Accordingly, the changes in antibody repertoire associated with tumor growth can serve as biomarkers of cancer. Immunosignature is a highly sensitive method for antibody repertoire analysis utilizing high density peptide microarrays. In the present review we discuss modern methods for antibody detection, as well as describe the principles and applications of immunosignature in research and clinical practice.

In vitro anti-Trypanosoma cruzi activity of methanolic extract of Bidens pilosa and identification of active compounds by gas chromatography-mass spectrometry analysis

  • Gabriel Enrique Cazares-Jaramillo;Zinnia Judith Molina-Garza;Itza Eloisa Luna-Cruz;Luisa Yolanda Solis-Soto;Jose Luis Rosales-Encina;Lucio Galaviz-Silva
    • Parasites, Hosts and Diseases
    • /
    • 제61권4호
    • /
    • pp.405-417
    • /
    • 2023
  • Chagas disease, caused by Trypanosoma cruzi parasite, is a significant but neglected tropical public health issue in Latin America due to the diversity of its genotypes and pathogenic profiles. This complexity is compounded by the adverse effects of current treatments, underscoring the need for new therapeutic options that employ medicinal plant extracts without negative side effects. Our research aimed to evaluate the trypanocidal activity of Bidens pilosa fractions against epimastigote and trypomastigote stages of T. cruzi, specifically targeting the Brener and Nuevo León strains-the latter isolated from Triatoma gerstaeckeri in General Terán, Nuevo León, México. We processed the plant's aerial parts (stems, leaves, and flowers) to obtain a methanolic extract (Bp-mOH) and fractions with varying solvent polarities. These preparations inhibited more than 90% of growth at concentrations as low as 800 ㎍/ml for both parasite stages. The median lethal concentration (LC50) values for the Bp-mOH extract and its fractions were below 500 ㎍/ml. Tests for cytotoxicity using Artemia salina and Vero cells and hemolytic activity assays for the extract and its fractions yielded negative results. The methanol fraction (BPFC3MOH1) exhibited superior inhibitory activity. Its functional groups, identified as phenols, enols, alkaloids, carbohydrates, and proteins, include compounds such as 2-hydroxy-3-methylbenzaldehyde (50.9%), pentadecyl prop-2-enoate (22.1%), and linalool (15.4%). Eight compounds were identified, with a match confirmed by the National Institute of Standards and Technology (NIST-MS) software through mass spectrometry analysis.

Biological Inspiration toward Artificial Photostystem

  • Park, Jimin;Lee, Jung-Ho;Park, Yong-Sun;Jin, Kyoungsuk;Nam, Ki Tae
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2013
  • Imagine a world where we could biomanufacture hybrid nanomaterials having atomic-scale resolution over functionality and architecture. Toward this vision, a fundamental challenge in materials science is how to design and synthesize protein-like material that can be fully self-assembled and exhibit information-specific process. In an ongoing effort to extend the fundamental understanding of protein structure to non-natural systems, we have designed a class of short peptides to fold like proteins and assemble into defined nanostructures. In this talk, I will talk about new strategies to drive the self-assembled structures designing sequence of peptide. I will also discuss about the specific interaction between proteins and inorganics that can be used for the development of new hybrid solar energy devices. Splitting water into hydrogen and oxygen is one of the promising pathways for solar to energy convertsion and storage system. The oxygen evolution reaction (OER) has been regarded as a major bottleneck in the overall water splitting process due to the slow transfer rate of four electrons and the high activation energy barrier for O-O bond formation. In nature, there is a water oxidation complex (WOC) in photosystem II (PSII) comprised of the earthabundant elements Mn and Ca. The WOC in photosystem II, in the form of a cubical CaMn4O5 cluster, efficiently catalyzes water oxidation under neutral conditions with extremely low overpotential (~160 mV) and a high TOF number. The cluster is stabilized by a surrounding redox-active peptide ligand, and undergo successive changes in oxidation state by PCET (proton-coupled electron transfer) reaction with the peptide ligand. It is fundamental challenge to achieve a level of structural complexity and functionality that rivals that seen in the cubane Mn4CaO5 cluster and surrounding peptide in nature. In this presentation, I will present a new strategy to mimic the natural photosystem. The approach is based on the atomically defined assembly based on the short redox-active peptide sequences. Additionally, I will show a newly identified manganese based compound that is very close to manganese clusters in photosystem II.

  • PDF