• Title/Summary/Keyword: low-branched levan

Search Result 2, Processing Time 0.018 seconds

High-Level Production of Low-Branched Levan from Pseudomonas aurantiaca S-4380 for the Production of $di-\beta-D-Fructofuranose$ Dianhydride IV

  • JANG KI-HYO;JANG EUN-KYUNG;KIM SEUNG-HWAN;KIM IN-HWAN;KANG SOON AH;KOH ISSAC;PARK YOUNG-IL;KIM YOUNG-JUN;HA SANG-DO;KIM CHUL HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.102-108
    • /
    • 2006
  • The IscA gene, encoding a levansucrase of 424 amino acids (aa) residues, was cloned from the genomic DNA of Pseudomonas aurantiaca S-4380, and overexpressed in Escherichia coli. The recombinant levansucrase overexpressed in E. coli was then used to produce levan from sucrose. Levan crystals with 98% purity could be obtained from the reaction mixture with $62\%$ yield using an alcohol precipitation method. The molecular weight of the levan was $7\times10^5$ daltons. Methylation studies showed that the levan was branched: main linkage C-2,6; branched linkage C-2,1; and degree of branching $6\%$. Three bacterial levans from different strains were incubated with levan fructotransferase (LFTase) from Arthrobacter ureafaciens K2032, which produced $di-\beta-D-fructofuranose$ dianhydride IV (DFA IV); final conversion yields from the levans to DFA IV were $39\%$ in Zymomonas mobilis, $53\%$ in Serratia levanicum, and $59\%$ in P. aurantiaca S-4380 levansucrase. The levan from P. aurantiaca S-4380 levansucrase gave the highest conversion yield of levan to DFAIV so far reported.

Molecular Characterization of the Levansucrase Gene from Pseudomonas aurantiaca S-4380 and Its Expression in Escherichia coli

  • Jang, Eun-Kyung;Jang, Ki-Hyo;Isaac Koh;Kim, In-Hwan;Kim, Seung-Hwan;Kang, Soon-Ah;Kim, Chul-Ho;Ha, Sang-Do;Rhee, Sang-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.603-609
    • /
    • 2002
  • DFA IV is di-D-fructose-2,6':6,2'-dianhydride, consisting of two fructose residues. It can be enzymatically synthesized from levan by levan fructotransferase, and can be used for mineral absorption. Understanding of the structure and composition of levan is important to obtain high-level production of DFA IV. A bacterial strain, Pseudomonas aurantiaca 5-4380, was identified to produce low-branched levan, and the levansucrase gene (lsch) from this bacterium was found to be composed of 1,275 Up coding for a protein of 424 amino acids, with an estimated molecular weight of 47 kDa. The bacterial levansucrase gene was expressed in Escherichia coli DH5${\alpha}$ by its own promoter and lac promoter. The recombinant levansucrase was produced in soluble form with 170U of levansucrase activity from 1-ml E. coii culture broth. The expressed enzyme from the clone showed similar biochemical properties, such as size of active levansucrase, degree of branching, and optimum temperature, with P.aurantiaca 5-4380 levansucrase.