• 제목/요약/키워드: low water potential

검색결과 817건 처리시간 0.033초

제주도 감귤원 토양에서 GUS, RF, AF 지수를 이용한 농약의 용탈잠재성 평가 (Estimation of Pesticide Leaching Potential Using GUS, RF and AF Index in Cheju Citrus Orchard Soils)

  • 오상실;문두길;정종배;현해남
    • 한국환경농학회지
    • /
    • 제21권1호
    • /
    • pp.7-16
    • /
    • 2002
  • 유기물함량이 다른 감귤원 토양을 대상으로 GUS, RF 및 AF 값을 비교하여 감귤원에서 많이 사용되고 있는 농약 종류별 지하수 오염 잠재성을 평가하였다. GUS에 의하면 metribuzin과 metolachlor는 조사된 모든 토양통에서 용탈 가능성이 큰 것으로 평가되었으며, alachlor와 linuron도 대부분 토양에서 용탈가능성이 높은 것으로 평가되었으며 linuron의 경우에는 특히 비화산회토양에서 용탈의 가능성이 매우 높은 것으로 나타났다. Diuron과 diniconazole은 대부분 토양에서 용탈 가능성이 없는 것으로 평가되었고, chlorothalonil과 chlorpyrifos는 유기물 함량에 관계없이 용탈 가능성이 없는 것으로 평가되었다. RF에 의한 평가에서는 diniconazole, chlorothalonil, chlorpyrifos는 모든 토양에서, linuron과 diuron은 일부 비화산회토를 제외한 모든 토양에서 이동성이 매우 낮은 것으로 분류되었으며, metolachlor와 alachlor는 대부분의 토양에서 이동성이 보통인 것으로, metribuzin은 유기탄소함량이 낮은 토양에서 오염 잠재성이 있는 것으로 평가되었다. AF에 의하면 diniconazole, chlorothalonil, chloipyrifos는 화산회토, 비화산회토에 관계없이 지하수 오염 잠재성이 없는 것으로 평가되었으며, 반면 metribuzin은 화산회토, 비화산회토에 관계없이 오염 잠재성이 있는 것으로 평가되었다. Metolachlor는 비화산회토에서 지하수 오염 잠재성이 있는 것으로 평가되었고, alachlor, linuron 및 diuron은 유기물 함량이 낮은 일부 비화산회토에서만 지하수 오염 잠재성이 우려되는 것으로 나타났다. 농약의 용탈잠재성은 용해도, 흡착성, 잔류성 등의 약제 자체의 특성과 함께 유기물 함량, 투수성 등 토양의 물리화학적 특성에 따라서 결정된다. 본 연구의 결과를 보면 이러한 일반적인 원칙이 각 농약의 용탈잠재성 지수에 그대로 반영되었는데, 용해도가 높고, 흡착성이 약하며 잔류성이 긴 약제일수록 대부분의 토양에서 용탈잠재성이 큰 것으로 나타났다. 토양의 특성 중에서는 특히 농약의 흡착에 직접 영향을 미치는 유기물 함량이 용탈잠재성 지수를 결정하는 중요한 요인으로 볼 수 있는데, 본 연구의 결과에서도 일반적으로 유기물 함량이 높은 화산회 토양에서는 농약의 용탈잠재성이 비화산회토양에 비교하여 낮은 것으로 나타났으며, 용해도가 높고 흡착성이 매우 낮은 약제인 metribuzin의 경우에도 투수성이 상대적으로 높은 화산회 토양에서보다 투수성이 낮은 비화산회토양에서 용탈 가능성이 높게 평가된 것으로 보아 대부분 농약의 용탈잠재성을 결정하는데 있어 토양의 투수성 보다도 유기물 함량이 더욱 중요하게 영향을 미치는 것으로 판단할 수 있다. 따라서 비화산회토를 위주로 한 유기물 함량이 낮은 토양이 분포된 지역의 지하수가 농약의 오염에 취약할 것으로 판단할 수 있으며, 이들 지역에서는 용탈잠재성이 높은 것으로 평가된 약제들의 사용을 최대한 제한함으로써 제주도 피하수의 농약 오염을 방지할 수 있을 것이다. 물론 제주도 감귤원에서는 토양의 유기물 함량과 약제의 흡착성을 우선적으로 고려하여 사용할 농약을 선택해야 할 것으로 보이나, 그 외 약제의 잔류성, 사용량, 사용시기와 함께 기후조건, 토양의 투수성, 토층이 깊이, 지하수 깊이 등의 지역적인 특성들이 농약의 용탈잠재성에 미치는 영향도 더욱 구체적으로 파악되어야 할 것이며 농약의 선택 과정에서도 이러한 특성들이 앞으로 고려되어야 할 것이다.

제지공정 섬유상 원재료 및 공정 첨가제의 환경오염 부하 분석 (The Analysis of Environmental Impact Load by Fibrous Raw Materials and Wet-end Additives in Papermaking Process)

  • 김형진;신동욱
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.50-58
    • /
    • 2005
  • It is generally known that paper industry is the second largest industry in the use of process water, and also have the highest environmental impact load in the contaminant sources. Paper is produced from the mixtures composed of 1% fibrous raw materials and 99% water. The optimum use of process water effects on the quality properties of paper and the environmental impact load of waste water treatment. In this research, the kinds of fibrous raw material & additives used in the paperboard production line were investigated, and the quantification of environmental loads and the environmental effects of process water on COD potential were evaluated. The NBDCODs were also analyzed from process water by the method of waste water treatment in paper mill and applied for the optimum use of recycling water, and zero effluent process. In the fibrous raw materials, KOCC caused the highest COD potentials, and sack paper & UKP was comparatively low. The NBDCOD of KOCC largely reduced after biological treatment because of easily biodegradable properties, but AOCC contained non-biodegradable materials. In chemical additives, COD was high in turns of rosin>starch>deaeration agent>dye, NBDCOD greatly reduced in starch and deaeration agent. In the case of 2 kinds of paperboard product, the COD potentials was mainly high in starch, AOCC and KOCC.

마곡지구 하수열에너지이용 타당성 검토 (Feasibility study on district heating Magok area by sewage water heat source)

  • 이영수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.357-362
    • /
    • 2009
  • As a unutilized energy, treated sewage water locates widespread near urban areas. From the previous survey, the sewage water is reported to hold energy potential up to 36,000 Tcal/year, which was 2.1% of the total domestic energy consumption and 9.7% of the energy usage in the household and business sector in 2006. Temperature of the sewage water differs locally, but its range is observed in a range of $20{\sim}25^{\circ}C$ in summer and $8{\sim}13^{\circ}C$ in winter. Since the temperature range of the sewage water has a better seasonal distribution about $5{\sim}10^{\circ}C$ compared to ambient air, it is a promising heat sink for summer or heat source for winter. The sewage water is also a high quality heat source from its abundant quantity and uniform temperature. Considering the ambient temperature of Korea is very low in winter, a heat pump system using the sewage water can be an alternative to prevent problems of capacity deficiency and frost formation.

  • PDF

유역 물수지를 이용한 연 실제증발산 산정에 미치는 수문기후 영향 연구 (A Study on the Hydroclimatic Effects on the Estimation of Annual Actual Evapotranspiration Using Watershed Water Balance)

  • 임창수;임가희;윤세의
    • 한국수자원학회논문집
    • /
    • 제44권12호
    • /
    • pp.915-928
    • /
    • 2011
  • 본 연구에서는 댐유역의 연 실제증발산량에 영향을 미치는 주요한 수문기후요소를 파악하고 유역으로부터의 연 실제증발산량 산정을 위한 다변량회귀식을 제시하고자 하였다. 이를 위하여 우리나라 5개 댐유역(괴산댐, 섬진강댐, 소양강댐, 안동댐, 합천댐)에서연 물수지분석을실시하여 연실제증발산량을 산정하였고, 수문기후자료를 이용한 다변량회귀식으로부터 산정된 증발산량과 비교 검토함으로서 다변량회귀식의 타당성을 검토하였다. 또한 잠재증발산식들을 이용한 실제증발산량 산정 가능성을 파악하기 위하여 잠재증발산식들(Penman식, FAO P-M식, Makkink식, Preistley-Taylor식, Hargreaves식)로부터 산정된 잠재증발산량과 실제증발산량의 상관성을 검토하였다. 검토 결과 실제증발산량과 잠재증발산량 사이에 상관관계가 적어서 잠재증발산량을 이용한 실제증발산량 산정방법은 적절하지 않은 것으로 나타났다. 기존에 제안된 유역 실제증발산량 산정식들과 비교를 통하여 연 실제증발산량을 산정하는데 있어서 다변량회귀식의 적용성을 확인하였다. 또한 각 댐 유역의 실제증발산량에 영향을 미치는 주요 수문기후요소는 각기 다른 것으로 나타났으나, 공통적으로 강수량이 연 실제증발산량 산정을 위한 주요 기후요소인 것으로 나타났다.

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

Experimental Study on Temperature Dependence of Nitrate Sensing using an ISE-based On-site Water Monitoring System

  • Jung, Dae-Hyun;Kim, Dong-Wook;Cho, Woo Jae;Kim, Hak-Jin
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.122-122
    • /
    • 2017
  • Recently, environmental problems have become an area of growing interests. In-situ monitoring of water quality is fundamental to most environmental applications. The accurate measurement of nitrate concentrations is fundamental to understanding biogeochemistry in aquatic ecosystems. Several studies have reported that one of the most feasible methods to measure nitrate concentration is the use of Ion Selective-electrodes (ISEs). The ISE application to water monitoring has several advantages, such as direct measurement methodology, high sensitivity, wide measurement range, low cost, and portability. However, the ISE methods may yield inconsistent results where there was a difference in temperature between the calibration and measurement solutions, which is associated with the temperature dependence of ionic activity coefficients in solution. In this study, to investigate the potential of using the combination of a temperature sensor and nitrate ISEs for minimizing the effect of temperature on real-time nitrate sensing in natural water, a prototype of on-site water monitoring system was built, mainly consisting of a sensor chamber, an array of 3 ISEs, an waterproof temperature sensor, an automatic sampling system, and an arduino MCU board. The analog signals of ISEs were obtained using the second-order Sallen-key filter for performing voltage following, differential amplification, and low pass filtering. The performance test of the developed water nitrate sensing system was conducted in a monitoring station of drinking water located in Jeongseon, Kangwon. A temperature compensation method based on two-point normalization was proposed, which incorporated the determination of temperature coefficient values using regression equations relating solution temperature and electrode signal determined in our previous studies.

  • PDF

천연 제올라이트와 합성 제올라이트 5A를 이용한 메탄 하이드레이트의 생성에 대한 비교 연구 (A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A)

  • 박성식;박윤범;김남진
    • 신재생에너지
    • /
    • 제8권2호
    • /
    • pp.24-32
    • /
    • 2012
  • Natural gas hydrates have a high potential as the 21st century new energy resource, because it have a large amount of deposits in many deep-water and permafrost regions of the world widely. Natural gas hydrate is formed by physical binding between water molecule and gas mainly composed of methane, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ methane hydrate can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of methane hydrate, it is very important to rapidly manufacture hydrate. However, when methane hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. So in this study, hydrate formation was experimented by adding natural zeolite and Synthetic zeolite 5A in distilled water, respectively. The results show that when the Synthetic zeolite 5A of 0.01 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the natural zeolite. Also, the natural zeolite and Synthetic zeolite 5A decreased the hydrate formation time to a greater extent than the distilled water at the same subcooling temperature.

High Quality Nano Structured Single Gas Barrier Layer by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.251-252
    • /
    • 2012
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low Water Vapor Transition Rate (WVTR) of $1{\times}10^{-6}g/m^2$/day. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2$/day) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study, we developed an $Al_2O_3$ nano-crystal structure single gas barrier layer using a Neutral Beam Assisted Sputtering (NBAS) process. The NBAS system is based on the conventional RF magnetron sputtering and neutral beam source. The neutral beam source consists of an electron cyclotron Resonance (ECR) plasma source and metal reflector. The Ar+ ions in the ECR plasma are accelerated in the plasma sheath between the plasma and reflector, which are then neutralized by Auger neutralization. The neutral beam energies were possible to estimate indirectly through previous experiments and binary collision model. The accelerating potential is the sum of the plasma potential and reflector bias. In previous experiments, while adjusting the reflector bias, changes in the plasma density and the plasma potential were not observed. The neutral beam energy is controlled by the metal reflector bias. The NBAS process can continuously change crystalline structures from an amorphous phase to nano-crystal phase of various grain sizes within a single inorganic thin film. These NBAS process effects can lead to the formation of a nano-crystal structure barrier layer which effectively limits gas diffusion through the pathways between grain boundaries. Our results verify the nano-crystal structure of the NBAS processed $Al_2O_3$ single gas barrier layer through dielectric constant measurement, break down field measurement, and TEM analysis. Finally, the WVTR of $Al_2O_3$ nano-crystal structure single gas barrier layer was measured to be under $5{\times}10^{-6}g/m^2$/day therefore we can confirm that NBAS processed $Al_2O_3$ nano-crystal structure single gas barrier layer is suitable for OLED application.

  • PDF

호기성 분해, 혐기성 분해 및 독성을 고려한 생분해도 지표 개발 (Biodegradability Index Development Based on Aerobic Biodegradation, Anaerobic Biodegradation, and Toxicity Test)

  • 유규선;신항식
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.603-608
    • /
    • 2010
  • More than 8 millions of chemical have been used for human activities and lots of chemicals can not be degraded by microbial activities in this world. To show the biodegradability of a chemical, biodegradability index (B.I.) is suggested using aerobic biodegradability by $BOD_5$/COD, anaerobic biodegradability by methane potential (M.P.) and toxicity by the luminiscent bacteria. In this study, PVA (polyvinyl alcohol), HEC (hydroxy ethyl cellulose), 2,4,6-TCP (tri-chloro phenol) and 2,4-DCP (di-chloro phenol) are used for test chemicals. Though they show little toxicity, PAV and HEC have low B.I. because they are polymers having high molecular weight. That means that there are no bacteria that has enzyme to degrade polymer molecules. Also, anaerobic treatment is suggested better than aerobic treatment from B.I. 2,4,6-TCP and 2,4-DCP show high toxicity and have low B.I. Their low biodegradabilities seem to be originated from their toxicities. If B.I. is used in wastewater treatment, better treatment process can be suggested and finally it can lead our society to make more environment-friendly chemicals.

Enhancing the Thermotolerance of Entomopathogenic Isaria fumosorosea SFP-198 Conidial Powder by Controlling the Moisture Content Using Drying and Adjuvants

  • Kim, Jae Su;Lee, Se Jin;Lee, Hyang Burm
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.59-65
    • /
    • 2014
  • Entomopathogenic fungi are promising pest-control agents but their industrial applicability is limited by their thermosusceptibility. With an aim to increase the thermotolerance of Isaria fumosorosea SFP-198, moisture absorbents were added to dried conidial powder, and the relationship between its water potential and thermotolerance was investigated. Mycotized rice grains were dried at $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$ and the drying effect of each temperature for 24, 48, 96, and 140 hr was determined. Drying for 48 hr at $10^{\circ}C$ and $20^{\circ}C$ reduced the moisture content to < 5% without any significant loss of conidial thermotolerance, but drying at $30^{\circ}C$ and $40^{\circ}C$ reduced both moisture content and conidial thermotolerance. To maintain thermotolerance during storage, moisture absorbents, such as calcium chloride, silica gel, magnesium sulfate, white carbon, and sodium sulfate were individually added to previously dried-conidial powder at 10% (w/w). These mixtures was then stored at room temperature for 30 days and subjected to $50^{\circ}C$ for 2 hr. The white carbon mixture had the highest conidial thermotolerance, followed by silica gel, magnesium sulfate, and then the other absorbents. A significant correlation between the water potential and conidial thermotolerance was observed in all conidia-absorbent mixtures tested in this study (r = -0.945). Conidial thermotolerance in wet conditions was evaluated by adding moisturized white carbon (0~20% $H_2O$) to conidia to mimic wet conditions. Notably, the conidia still maintained their thermotolerance under these conditions. Thus, it is evident that conidial thermotolerance can be maintained by drying mycotized rice grains at low temperatures and adding a moisture absorbent, such as white carbon.