• Title/Summary/Keyword: low temperature storage

Search Result 1,112, Processing Time 0.029 seconds

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

Inhibition of Microbial Growth in Cabbage-Kimchi by Heat Treatment and Nisin·Yucca Extract (열처리 및 나이신·유카추출물 첨가에 의한 김치의 미생물 증식 저해)

  • Kim, Ji-Sun;Kim, Yu-Jin;Park, Jung-Mi;Kim, Tae-Jip;Kim, Beom-Soo;Kim, Yeon-Mi;Kim, Hye-Rim;Han, Nam-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.11
    • /
    • pp.1678-1683
    • /
    • 2010
  • For extension of storage period of cabbage-kimchi, effects of heat treatment as well as nisin or yucca extract were examined on the growth of microbes. Firstly, when kimchi was heated at various temperatures in polyethylene plastic bottle or membrane pouch, the optimum inhibitory condition giving no sensory change was at $80^{\circ}C$ for 30 min in a plastic membrane pouch and this treatment made a reduction of $0.3\;log_{10}CFU/g$ in total microbes. The result showed that use of plastic bottle was inefficient due to low heat transfer rate. Interestingly, pasteurization of seasoning pastes at $80^{\circ}C$ for 30 min separately from cabbage resulted in better inhibitory effect reducing $0.5\;log_{10}CFU/g$ of total bacteria and $1.0\;log_{10}CFU/g$ of lactic acid bacteria, and this operation was regarded as a promising inhibitory method. Secondly, when nisin and yucca extract were separately added in kimchi, microbial growth was inhibited during storage period and their inhibition effects were enhanced at lower temperature.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Microbial Safety and Quality of Fresh Carrot Juice Prepared with Different Environmentally-Friendly Washing Methods (친환경 세척제의 처리 방법을 달리하여 착즙한 당근 주스의 미생물 안전성 및 품질)

  • Lim, Sang-Wook;Choe, Da-Jeong;Kang, Min-Jung;Kim, Jong-Hyun;Kim, Myo-Jeong;Kim, Min-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.10
    • /
    • pp.1225-1233
    • /
    • 2017
  • The aim of this study was to evaluate the microbial inhibitory activity and physicochemical quality of fresh carrot juice prepared with different environmentally-friendly washing methods during low temperature storage. Individual and combined treatments with sodium bicarbonate (baking soda, $NaHCO_3$) and citric acid were applied to carrots for 10 min. Tap water and 50 ppm of sodium hypochlorite (NaOCl) were used as the control. Combined treatment of 1% $NaHCO_3$ and 1% citric acid significantly reduced total aerobic counts and coliforms. In addition, combined treatment of 1% $NaHCO_3$ and 1% citric acid inhibited microbial growth for 7 days at $4^{\circ}C$ and $10^{\circ}C$ in a shelf-life study. There were no significant differences among the sanitizers in terms of $^{\circ}Brix$, acidity, pH, and color. Changes in physicochemical quality were not significantly different by sanitizer but were affected by storage temperature. These results indicate that washing with combined treatment of 1% $NaHCO_3$ and 1% citric acid is an effective method to inhibit the microbial population and maintain physicochemical quality. Therefore, combined treatment of 1% $NaHCO_3$ and 1% citric acid can be effectively used to sanitize and prepare carrot juice without affecting other properties.

Control of Stretching of Tomato (Lycopersicon esculentum Mill.) on Cylindrical Paper Pot Seedling Using High-Salinity Potassium Fertilizers (고농도 칼륨처리를 활용한 원통형 종이포트 토마토묘의 도장억제)

  • Xu, Chan;Kim, Si Hong;Kim, Dae Hoon;Kim, Jae Kyung;Heo, Jae Yun;Vu, Ngoc Thang;Choi, Ki Young;Kim, Il Seop;Jang, Dong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.354-364
    • /
    • 2020
  • This study was conducted to examine the potential of inducing salinity stress on cylindrical paper pot tomato seedlings to inhibit overgrowth. Potassium fertilizers, sulfate of potash (K2SO4), muriate of potash (KCl), and monopotassium phosphate (KH2PO4), were prepared as two solutions of (5 and 10) dS·m-1 salinity level, respectively, to investigate the influence on tomato (Lycopersicon esculentum Mill.) seedling growth. We also investigated the adaptability and survivability of treated tomato seedlings with high-salinity potassium (10 dS·m-1 KCl) to harsh environmental conditions (water deficit, low temperature, and storage conditions). Repeated addition of high-salinity level KCl, K2SO4, or KH2PO4 markedly decreased the dry matter of shoot and root, leaf area, and net assimilate rates (NAR) but increased the stem diameter of seedlings. Among the three sources, the relative growth rate of plant height (RGRH) was most sensitive to KCl addition; increasing salinity levels of KCl solution decreased the RGRH of seedlings. The compactness, which directly reflects the stocky growth index, increased in KCl or KH2PO4 treatments. After a week's water deficit, severely wilted seedlings were observed in control seedlings (untreated with KCl), but no wilted seedlings were observed in the KCl treated seedlings, and the relative water content (RWC) of the untreated seedlings significantly decreased by 23 %, while that of the pretreated seedlings only decreased by 8 %. The increase in ion leakage of KCl treated seedlings at low temperatures was less than that of untreated seedlings. Furthermore, there was far lower damage proportion on pretreated seedlings at (9, 12, and 15)℃ storage temperatures after 20 days, compared with on unpretreated seedlings. Our results suggest that high-salinity potassium fertilizer, especially KCl, is effective in preventing tomato seedling overgrowth, while it also improves tolerance.

Effect of Hot-water Dipping on Inhibiting Red Discoloration of Basal Part in Chicon (열수 침지 처리가 치콘 절단면의 적변 억제에 미치는 영향)

  • Jung, Hyun Jin;Kang, Ho-Min
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • Hot water dipping test was conducted for chicon to restrict red discoloration of its basal part which impairs the product value during sales. Hot water dipping treatment was given to chicon for 4 min and for 8 min at $38^{\circ}C$ and for 2 min and 4 min at $42^{\circ}C$, and for 1 min and 2 min at $45^{\circ}C$, along with control (for one min at $20^{\circ}C$). The red discoloration indices of basal part of chicon during sensory evaluation on the sixth day of storage under the storage temperature at $10^{\circ}C$ was lower at $42^{\circ}C$ for 2 min, $42^{\circ}C$ for 4 min and $45^{\circ}C$ for 1 min treatments. The color change value of the basal part in chicon measured by colorimeter showed that the lowest ${\Delta}a^*$ and ${\Delta}h$ were maintained in the basal part of chicon treated at $42^{\circ}C$ for 2 min. Whereas, color changes in $42^{\circ}C$ for 2 min and $45^{\circ}C$ for 1 min treatments were significantly low as compared with that of control. The contents of total phenolic compounds which are the substances that cause red discoloration of basal part in chicon were lowest at $42^{\circ}C$ for 2 min, $42^{\circ}C$ for 4 min and $45^{\circ}C$ for 1 min treatments. The activity of phenylalanine ammonia lyase (PAL) resposible for in the synthesis of phenolic substances was the least in $42^{\circ}C$ for 2 min treatment. Whereas, PAL activity of the chicons treated a t $42^{\circ}C$ for 2 min and at $45^{\circ}C$ for 1 min were significantly lower than that of control. However, red discoloration was progressed as similar level with that of control in the basal part of chicon at $45^{\circ}C$ for 2 min. The contents of total phenolic compounds and PAL activity in this treatment were not significantly different from those in control. The polyphenol oxidase (PPO) activity which causes red discoloration of cut tissues was low in all the treatments including $42^{\circ}C$ and $45^{\circ}C$ treatment at which no inhibition effects of the red discoloration of basal part of chicon were observed. When the correlation coefficient between each investigated index was tested, most of them showed high correlation except the PPO activity and particularly and the red discoloration index and sensory evaluation ${\Delta}h$ values, and PAL activity and total phenolic compounds content were $r=0.927^{**}$, and $r=0.942^{**}$, respectively.

Thermal Stability of Israeli Carp Actomyosin and Its Protection by Chemical Additives (이스라엘 잉어 Actomyosin의 열안정성과 그 보호)

  • NAM Taek-Jeong;CHOI Yeung-Joon;PYEUN Jae-Hyeung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.271-279
    • /
    • 1984
  • Effects of temperature and additives on the stability of actomyosin extracted from skeletal muscle of Israeli carp, Cyprinus carpio nudus, were studied by analyzing free SH-group, ATP-sensitivity and Ca-ATPase activity. The used additives were sucrose, sorbitol, Na-glutamate and L-cysteine. Furthermore, the denaturation constant($K_D$), protective effect(${\Delta}E/M$) and the other thermo-dynamic parameters on protein denaturation are systematically discussed. The actomyosin showed $4.12{\sim}4.68 mg/ml$ in protein concentration, $2.63{\sim}2.93\%$ in ribonucleic acid to the protein, $1:2.20{\sim}2.63$ in the binding ratio of myosin and actin, $4.33{\sim}5.26\%$ in fat content, 109.78 in ATP-sonsitivity, $0.159{\sim}0.201\;{\mu}M-Pi/min/mg-protein$ in Ca-ATPase activity and $3.3{\sim}3.4M/10^5$g-protein in free SH-group content. The first-order rate plots were obtained on the decrease of Ca-ATPase activity and ATP-sensitivity with an increase in temperature, while the free SH-group was increased to $60^{\circ}C$ and decreased rapidly above the temperature. The half-life of Ca-ATPase activity on the actomyosin Ca-ATPase was 280 min at $12^{\circ}C$, 125 min at $20^{\circ}C$, 55 min at $30^{\circ}C$ and 13 min at $40^{\circ}C$, and activation energy, activation enthalpy, activation entropy and free energy of the proteins at $20^{\circ}C$ wene 5,395 cal/mole, 4,814 cal/mole, -40.42 e.u. and 17,626 cal/mole, respectively. The protective effect of the additives on the actomyosin Ca-ATPase showed that the most effective material is $3\%$ sorbitol and followed in the order of $8\%$ Na-glutamate, $1\%$ sucrose and $1\%$ L-cysteine. The actomyosin was more stable at $-30^{\circ}C$ than at $0^{\circ}C$ and $-20^{\circ}C$. and when the additives were used in the low temperature storage, $8\%$ Na-glutamate was the most effective. $3\%$ sorbitol, $1\%$ sucrose and $1\%$ L-cysteine was to become lower in the order.

  • PDF

CO2 Methanation Characteristics over Ni Catalyst in a Pressurized Bubbling Fluidized Bed Reactor (가압 기포 유동층 반응기에서의 Ni계 촉매 CO2 메탄화 특성 연구)

  • Son, Seong Hye;Seo, Myung Won;Hwang, Byung Wook;Park, Sung Jin;Kim, Jung Hwan;Lee, Do Yeon;Go, Kang Seok;Jeon, Sang Goo;Yoon, Sung Min;Kim, Yong Ku;Kim, Jae Ho;Ryu, Ho Jeong;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.871-877
    • /
    • 2018
  • Storing the surplus energy from renewable energy resource is one of the challenges related to intermittent and fluctuating nature of renewable energy electricity production. $CO_2$ methanation is well known reaction that as a renewable energy storage system. $CO_2$ methanation requires a catalyst to be active at relatively low temperatures ($250-500^{\circ}C$) and selectivity towards methane. In this study, the catalytic performance test was conducted using a pressurized bubbling fluidized bed reactor (Diameter: 0.025 m and Height: 0.35 m) with $Ni/{\gamma}-Al_2O_3$ (Ni70%, and ${\gamma}-Al_2O_3$30%) catalyst. The range of the reaction conditions were $H_2/CO_2$ mole ratio range of 4.0-6.0, temperature of $300-420^{\circ}C$, pressure of 1-9 bar, and gas velocity ($U_0/U_{mf}$) of 1-5. As the $H_2/CO_2$ mole ratio, temperature and pressure increased, $CO_2$ conversion increases at the experimental temperature range. However, $CO_2$ conversion decreases with increasing gas velocity due to poor mixing characteristics in the fluidized bed. The maximum $CO_2$ conversion of 99.6% was obtained with the operating condition as follows; $H_2/CO_2$ ratio of 5, temperature of $400^{\circ}C$, pressure of 9 bar, and $U_0/U_{mf}$ of 1.4-3.

Study on the Thermal Storage Characteristics of Phase Change Materials for Greenhouse Heating (온실보온(溫室保溫)을 위한 상변화(相變化) 물질(物質)의 축열특성연구(蓄熱特性硏究))

  • Song, Hyun-Kap;Ryou, Young-Sun;Kim, Young-Bok
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.65-78
    • /
    • 1993
  • An overdose of fossil fuel for greenhouse heating causes not only the high cost and low quality of agricultural products, but also the environmental pollution of farm village. To solve these problems it is desirable to maximize the solar energy utilization for the heating of greenhouse in winter season. In this study phase change materials were selected to store solar energy concentratively for heating the greenhouse and their characteristics of thermal energy storage were analyzed. The results were summarized as follows. The organic $C_{28}H_{58}$, and the inorganic $CH_3COONa{\cdot}3H_2O\;and\;Na_2SO_4{\cdot}10H_2O$ were selected as low temperature latent heat storage materials. The equation of critical radius was derived to define the generating mechanism of the maximum latent heat of phase change materials. The melting point of $C_{28}H_{58}$ was $62^{\circ}C$, and the latent heat was $50.0{\sim}52.0kcal/kg$. The specific heat of liquid and solid phase was $0.54{\sim}0.69kcal/kg^{\circ}C$ and $0.57{\sim}0.75kcal/kg^{\circ}C$ respectively. The melting point of $CH_3COONa{\cdot}3H_2O$ was $61{\sim}62^{\circ}C$, the latent heat was $64.9{\sim}65.8$ kcal/kg and the specific heat of liquid and solid phase was respectively $0.83kcal/kg^{\circ}C$ and $0.51{\sim}0.52kcal/kg^{\circ}C$. The melting point of $Na_2SO_4{\cdot}10H_2O$ was $30{\sim}30.9^{\circ}C$, the latent heat was 53.0 kcal/kg and the specific heat of liquid and solid phase was respectively $0.78{\sim}0.89kcal/kg^{\circ}C$ and $0.50{\sim}0.7kcal/kg^{\circ}C$ When the urea of 21.85% was added to control the melting point of $Na_2SO_4{\cdot}10H_2O$ and the phase change cycles were repeated from 0 to 600, the melting point was $16.7{\sim}16.0^{\circ}C$ and the latent heat was $36.0{\sim}28.0kcal/kg^{\circ}C$.

  • PDF