• 제목/요약/키워드: low temperature sintering

검색결과 768건 처리시간 0.033초

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

뮬라이트 세라믹스의 저온 소결을 위한 첨가제 (Low Temperature Sintering Additives for Mullite Ceramics)

  • 임창빈;여동훈;신효순;조용수
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.604-609
    • /
    • 2011
  • Additives for low temperature sintering of mullite ceramics were investigated for matching Mo-Cu conducting paste with that ceramics at 1,400$^{\circ}C$. $SiO_2$, MgO and $Y_2O_3$ were chosen as the additives for low temperature sintering, and the amounts of those additives were varied with sintering temperature of 1,400$^{\circ}C$ to 1,500$^{\circ}C$. With additives of 1.0 wt% of $SiO_2$, 1.0 wt% of MgO, and 1.5 wt% of $Y_2O_3$, the densest sintered body of 3.12 g/$cm^3$ was obtained at 1,400$^{\circ}C$ in reducing atmosphere. The flexural strength of that was 325 MPa and the CTE (Coefficient of thermal expansion) was 4.33 ppm/$^{\circ}C$.

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of laminating and sintering condition on permittivity and shrinkage during LTCC process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.67-70
    • /
    • 2007
  • LTCC (Low Temperature Co-fired Ceramic) has been emerged as a promising technology in packaging industry. In this technology the lamination and the sintering process are very important because they change the permittivity of ceramics and the dimension of metal pattern which have influences on electric property. In this paper we studied on influence of the permittivity and the dimension change by lamination pressure and sintering temperature of LTCC process. As a results, permittivity increase along with increasing of lamination pressure and sintering temperature.

  • PDF

LTCC 공정 중 적층 및 소결이 유전율과 회로 형상에 미치는 영향 (Influence of Laminating and Sintering Condition on Permittivity and Shrinkage During LTCC Process)

  • 정명식;황상현;정형욱;임성한;오수익
    • 소성∙가공
    • /
    • 제16권5호통권95호
    • /
    • pp.396-400
    • /
    • 2007
  • LTCC(Low Temperature Co-fired Ceramic) which offers a good performance to produce multilayer structures with electronic circuits and components has emerged as an attractive technology in the electronic packaging industry. In LTCC module fabrication process, the lamination and the sintering are very important processes and affect the electrical characteristics of the final products because the processes change the permittivity of ceramics and the dimension of the circuit patterns which have influences on electronic properties. This paper discusses the influence of lamination pressure and sintering temperature on the permittivity and the dimensional change of LTCC products. In the present investigation, it is shown that the permittivity increases along with increasing of the lamination pressure and the sintering temperature.

저온소결 PMN-PNN-PZT세라믹스의 소결온도에 따른 미세구조 및 강유전특성 (Microstructure and Ferroelectric Properties of Low Temperature Sintering PMN-PNN-PZT Ceramics with Sintering Temperature)

  • 류주현;이현석;이상호
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1118-1122
    • /
    • 2006
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured and their microstructure, ferroelectric and piezoelectric properties were investigated. By increasing sintering temperature, remanent polarization$(P_r)$ was increased due to the increase of sinterability and grain size. However, coercive $field(E_c)$ showed an opposite tendency to remanent polarization owing to the feasibility of domain wall motion. At the sintering temperature of $900^{\circ}C$, dielectric $constant({\varepsilon}_r)$, electromechanical coupling $factor(k_p)$, piezoelectric $constant(d_{33})$ and mechanical quality $factor(Q_m)$ showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

LPS-SiC 세라믹스 제조특성에 미치는 소결온도의 영향 (Effects of Sintering Temperature on Fabrication Properties of LPS-SiC Ceramics)

  • 박이현;정헌채;김동현;윤한기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.204-209
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, $SiC_f/SiC$ composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing fiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of $SiC_f/SiC$ composites by hot pressing method. In the present work, Monolithic LPS-SiC was fabricated by hot pressing method in Ar atmosphere at 1760 $^{\circ}C$, 1780 $^{\circ}C$, 1800 $^{\circ}C$ and 1820 $^{\circ}C$ under 20 MPa using $Al_2O_3-Y_2O_3$ system as sintering additives in order to low sintering temperature. The starting powder was high purity ${\beta}-SiC$ nano-powder with an average particle size of 30 nm. Monolithic LPS-SiC was evaluated in terms of sintering density, micro-structure, flexural strength, elastic modulus and so on. Sintered density, flexural strength and elastic modulus of fabricated LPS-SiC increased with increasing the sintering temperature. In the micro-structure of this specimen, it was found that grain of sintered body was grown from 30 nm to 200 nm.

  • PDF

하소온도가 저온소결 PMN-PZN-PZT 세라믹스의 압전특성에 미치는 영향 (Effect of Calcination Temperature on the Piezoelectric Characteristics of Low Temperature Sintering PMN-PZN-PZT ceramics)

  • 이일하;이상호;류주현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.214-216
    • /
    • 2006
  • In this study, in order to develop the composition ceramics for low loss and low temperature sintering multilayer piezoelectric actuator, PMN-PZN-PZT ceramics were fabricated using two stage calcination method and $Li_2CO_3$, $Bi_2O_3$ and CuO as sintering aids and their piezoelectric characteristics were investigated according to the 2nd calcination and sintering temperature. At the calcination temperature of $750^{\circ}C$ and sintering temperature of $930^{\circ}C$, density, electromechanical coupling factor ($k_p$), mechanical quality factor ($Q_m$), Dielectric constant (${\varepsilon}_r$) and piezoelectric constant ($d_{33}$) of specimen showed the optimum value of $7.94g/cm^2$ 0.581, 1554, 1555 and 356pC/N, respectively for multilayer piezoelectric actuator application.

  • PDF

PZT + 0.5wt%$MnO_2$ + 1wt%$B_2O_3$ 세라믹스의 저온소결에 관한 연구 (Low-Temperature Sintering of PZT+0.5wt%$MnO_2$+1wt%$B_2O_3$ ceramics)

  • 신혜경;김대일;배선기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.346-347
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering ceramics, PZT ceramics adding $MnO_2$, $B_2O_3$ were manufactured, and their piezoelectric and dielectric properties is investigated. The results of this study were gotten such as follows. The electromechanical coupling coefficient(kp) showed good properties on the whole, showed its maximum value 28.266 in specimens sintered at 1200[$^{\circ}C$]. The mechanical quality coefficient(Qm) showed its maximum value 162.61 in specimens sintered at 1200[$^{\circ}C$] and was increased by increasing sintering temperature. The dielectric constant showed the optimum values of 538.903 at specimen sintered at $1000^{\circ}C$.

  • PDF

Pb(Mg1/2W1/2)O3 치환에 따른 저온소결 Pb(Mg1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 세라믹스의 압전 및 유전특성 (Piezoelectric and Dielectric Characteristics of Low Temperature Sintering Pb(Mg1/2W1/2)O3-Pb(Mn1/3Nb2/3)O3-Pb(Zr1/2Ti1/2)O3 Ceramics With the Substitution of Pb(Mg1/2W1/2)O3)

  • 류주현;이현석;정광현;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.417-421
    • /
    • 2006
  • In this study, in order to develop low temperature sintering piezoelectric ceramics for LTCC (Low-Temperature Cofired Ceramic) multilayer piezoelectric actuator, PMW-PMN-PZT ceramics using $0.2wt%\; Li_2CO_3$ and $0.25wt%\;CaCO_3$ as sintering aids were investigated according to the varation of PMW substution. Composition ceramics could be sintered at $900^{\circ}C$ by adding sintering aids. As the amount of PMW substitution increased, the crystal structure of PMW-PMN-PZT ceramics moved from tetragonal phase to rhombohedral phase gradually, and MPB(Morphotrophic Phase Boundary) region appeared at 2 mol% PMW substitution. At the sintering temperature of $900^{\circ}C$, the density, electromechanical coupling factor(kp), mechanical quality factor(Qm), dielectric constant(${\epsilon}r$), piezoelectric constant(d33) and Curie temperature(Tc) of 2 mol% PMW substituted PMW-PMN-PZT ceramics showed the optimal values of $7.88g/cm^3$, 0.58, 1002, 1264, 352 pC/N and $336^{\circ}C$, respectively, for LTCC multilayer piezoelectric actuator application.

BiFe3첨가에 따른 저온소결 PSN-PZT세라믹스의 유전 및 압전 특성 (Dielectric and Piezoelectric Properties of Low Temperature Sintering PSN-PZI Ceramics with BiFe3 Substitution)

  • 류주현;정광현;정영호
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.492-496
    • /
    • 2004
  • In this study, (0.96 -x)(PSN-PZT)-xBF-0.04 PNW+0.3wt%MnO$_2$+0.6wt%CuO ceramics were fabricated with the variations of the amount of BiFeO$_3$substitution and sintering temperature for the development of modified ceramics which can be sintered in the low temperature($\leq$100$0^{\circ}C$ ), and their microstructural, dielectric and piezoelectric characteristics were investigated. As the amount of BiFeO$_3$ substitution was increased, the density, mechanical quality factor(Q$_{m}$) and electromechanical coupling factor(k$_{p}$) showed the maximum value at each of sintering temperature. At sintering temperature of 98$0^{\circ}C$ and BiFeO$_3$substitution of 2 mol%, the density, dielectric constant and electromechanical coupling factor(k$_{p}$) showed the maximum value of 7.84 g/㎤, 1415 and 0.49, respectively. And at sintering temperature of 95$0^{\circ}C$ and BiFeO$_3$substitution of 3mol%, mechanical quality factor showed the maximum value of 1062. 1062.