• Title/Summary/Keyword: low temperature firing

Search Result 184, Processing Time 0.023 seconds

Sintering and Microstructure of PZT Ceramics Prepared from Nanoparticles by Sol-Gel Process (나노 입자를 이용한 PZT 압전 세라믹스의 소결 및 미세구조)

  • Park Yong-Kap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.457-460
    • /
    • 2005
  • Nano-sized titanium oxide and zirconium oxide powders were synthesized by hydrolysis of titanium isopropoxide $[Ti(OC_3H7)_4]$ and zirconium tetrachloride ($ZrC1_4$) via a sol-gel technique. Lead titanate powders were prepared by mixing $TiO_2$ precursors with PbO slurry made with dilute $NH_4OH$. Lead zirconate titanate powders were, then, synthesized by mixing $PbTiO_3$ with $ZrO_2$ powders. The goal of this research was to obtain the $PbZrTiO_3(PZT)$ powders and sintering these powders at low temperature. The $PbTiO_3$ and PZT powders after firing were analyzed by X-ray diffraction(XRD) and transmission electron microscopy(TEM) was utilized to observe the shape and size of the synthesized nano-particles. In the XRD pattern, the well-crystallized PZT phase could be obtained in consequence of firing at $900^{\circ}C$. SEM micrographs also showed that grains of PZT were relatively well grown with the size of the range of $2{\~}4{\mu}m$. The densified perovskite structure of $PbZrTiO_3$ could be obtained by sintering at temperature as low as $900^{\circ}C$. Characterization of the samples showed improved piezoelectric properties.

  • PDF

Archaeometric Characterization of Raw Materials and Tempers of Bricks Used in the Brick Tombs during Ungjin Period of Baekje (백제 웅진기 벽돌무덤에 사용된 벽돌의 재료와 첨가물 특성 분석)

  • Sungyoon Jang;Hong Ju Jin
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.571-582
    • /
    • 2022
  • In this study, the raw material and tempers of bricks used in three brick tombs built in Gongju, during the Ungjin period of Baekje were investigated. The royal tomb of King Muryeong, the 6th tomb in the royal tombs, and Kyochonri brick tomb remained in Gongju and the bricks of each site had different shape and physical properties despite their similarity in raw materials. As the results of the mineralogical and microstructural analysis, the bricks of the royal tombs were made of refined raw materials, and were infrequently added crushed bricks(grogs) as a tempering material. On the other hand, thick and elongated pores of bricks from the Kyochonri brick tomb were frequently found, and the remains of plant carbonization are observed in their microstructures. Since the pores are mainly distributed in a thickness of 0.3 to 1 mm, it is estimated that bricks were produced by adding a certain size of the plant to refined soil, and grogs also were added as a tempering material. In particular, it was found that adding plants and grogs in raw materials of bricks caused thick pores or cracks in the internal structure. Since the bricks of the Kyochonri brick tomb have internal cracks and low firing temperature, the ultrasonic velocity of the bricks was lower than that of the royal tomb bricks. It means that the mechanical strength of these bricks were relatively low. Accordingly, it is estimated that the tempering materials, firing temperature, and internal structures of bricks can affect durability of the brick, and it can be thought as a difference in the manufacturing technology of brick making.

Experimental Evaluation of Hydrate Formation and Mechanical Properties of Limestone Calcined Clay Cement (LC3) According to Calcination Temperature of Low-Quality Kaolin Clay in Korea (국산 저품질 고령토의 소성온도에 따른 석회석 소성점토 시멘트(LC3)의 수화물 생성 및 기계적 특성 평가)

  • Moon, Jae-Geun;Her, Sung-Wun;Cho, Seong-Min;Bae, Sung-Chul
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.252-260
    • /
    • 2022
  • In Korea, low-quality kaolin has significantly greater reserves and superior economic efficiency than high-purity kaolin. However, the utilization is low because it does not match the demand conditions of the market, and it is difficult to find a suitable source of demand. The purpose of this study is to derive the possibility and optimal calcination temperature of domestic low-quality kaolin that can be used as a raw material for limestone plastic clay cement (LC3). Isothermal calorimetry, X-ray diffraction analysis, Thermogravimetric Analysis, and compressive strength tests were conducted to evaluate hydrate generation and mechanical properties of LC3 paste according to calcination temperatures (600 ℃, 700 ℃, 800 ℃, 900 ℃). As a result, although 50 % of the clinker was replaced, the domestic low-quality kaolin clay produced calboaluminate hydrate and C(A)SH from the 3rd day of hydration, showing almost equal or higher strength to OPC, and there was a big difference in strength depending on the firing temperature.

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF

High-Temperature Behavior of Ba-Doped Boehmite Hydrothermally Prepared from $Al(OH)_3$ and $Ba(OH)_2$

  • Fujiyohi, Kaichi;Ishida, Shingo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.379-385
    • /
    • 1999
  • Minute boehmite crystals with high aspect rations, which were hydrothermally synthesized from gibbsite in $Ba(OH)_2$ solution, occluded Ba with the Ba/Al molar ratio of about 0.03 in their interlayers. Their surface areas were about 14$\m^2$/g. The Ba-intercalated bohemite samples were partly used for producing $BaAl_{12}O){19}$ with low sinterability by externally supplementing $Ba(OH)_2$, and for forming transient aluminas. The surface area of $BaAl_{12}O){19}$ obtained by firing at $1500^{\circ}C$ for 3 h was 5.3$\m^2$/g, which was significantly lower than 12$\m^2$/g of the sol-gel origin. While a mixture ${\gamma}$-alumina and BaO is known to from $BaAl_{12}O){19}$ at $1200^{\circ}C$, solid state reaction between η-alumina transformed from the Ba-intercalated boehmite and BaO formed from $Ba(OH)_2$ deposited on the boehmite started above $1300^{\circ}C$. This suggests that large sized $Ba^{2+}$ ion occluded in η-alumina considerably suppresses the diffusion of $Al^{3+}$ ion. The surface area of the Ba-intercalated boehmite fired at $1400^{\circ}C$ for 3h was as high as 14$\m^2$/g indicative of its potential applicability to combustion catalysts. But it was decreased to 5.0$\m^2$/g after firing at $1500^{\circ}C$ for 3 h, accompanied by abrupt formations of $\alpha$-alumina and $BaAl_{12}O){19}$ as main products. The suppression of $\alpha$-alumina formation up to $1400^{\circ}C$ also suggests the significant blocking effect of $Ba^{2+}$ ion on the diffusion of the component ions.

  • PDF

Application Study of Recoil Mechanism using Friction Springs (마찰스프링의 주퇴복좌장치 적용성 연구)

  • Cha, Ki-Up;Gimm, Hak-In;Cho, Chang-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.324-333
    • /
    • 2012
  • The conventional medium and large caliber gun, in general, utilize the hydro-pneumatic recoil mechanism to control the firing impulse and to return to the battery position. However, this kind of mechanism may cause the problems like the leakages and the property changes in oil and gas due to the temperature variations between low and high temperatures. Accordingly, the friction spring mechanism has recently been researched as an alternative system. The friction spring mechanism consists of a set of closed inner and outer rings with the concentric tapered contact surfaces assembled in the columnar form, and can only be used under the compression load. When the spring column is axially loaded, the tapered surfaces become overlapped, causing the outer rings to expand while the inner rings are being contracted in diameter allowing an axial displacement. Because of friction between tapered contact surfaces, much higher spring stiffness is obtained on the stroke at the increase in load than the stroke at the decrease. In this paper, the dynamic equations regarding the friction spring system and the design approach have been investigated. It is also tried for a dynamic model representing the recoil motion and the friction spring forces. And the model has been proved from firing test using a gun system with friction springs. All the results show that the recoil mechanism using friction springs can substitute for the classic hydro-pneumatic recoil system.

Production Characteristics and Post-depositional Influence of Iron Age Pottery from Chipyeongdong Site in Gwangju, Korea (광주 치평동 유적 출토 철기시대 토기의 제작특성과 매장환경 연구)

  • Jang, Sung-Yoon;Moon, Eun-Jung;Lee, Chan-Hee;Lee, Gi-Gil
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2012
  • This study aimed to interpret the provenance and firing temperature of pottery from Chipyeongdong site in Gwangju, Korea though mineralogical and geochemical methods and also investigated the post-depositional alteration of pottery in burial environments. It is also presumed that they were made of soils near the site because they have similar mineralogical composition and same geochemical evolution path. Based on the results of mineralogical analysis, the pottery samples are largely divided into 2 groups; $700^{\circ}C$ to $1,000^{\circ}C$ and 1,000 to $1,100^{\circ}C$. At some pottery fired at over $1,000^{\circ}C$, it is thought that the refinement of raw materials were processed to remove macrocrystalline fragments. However, it was found that phosphate in soil environments formed amorphous aggregates with Al and Fe within the pores and voids on pottery fired at the low temperature. It indicates the contamination of pottery after burial.

The Influence of PbO Content on the Crystallisation Characteristics and Dielectric Properties of Glass Frit for LTCC (LTCC용 Glass Frit의 결정화 특성 및 유전 특성에 대한 PbO 함량의 영향)

  • Park, Jeong-Hyun;Kim, Yong-Nam;Song, Kyu-Ho;Yoo, Jae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.438-445
    • /
    • 2002
  • In this study, the glass frit of $PbO-TiO-2-SiO_2-BaO-ZnO-Al_2O-3-CaO-B_2O_3-Bi_2O_3-MgO$ system was manufactured. The glass was melted at $1,400{\circ}C$, quenched and attrition-milled. The glass frit powder was pressed and fired for 2h at the range of $750~1,000{\circ}C$. The crystallization of glass frit began at about $750{\circ}$ and at low temperature, the main crystal phases were hexagonal celsian($BaAl_2Si_2O_8$) and alumina. As the firing temperature increased, the crystal phases of monoclinic celsian, zinc aluminate, zinc silicate, calcium titanium silicate and titania appeared. And the increase of firing temperature led to transformation of hexagonal celsian to monoclinic. The only glass frit containing 15wt% PbO had the crystal phase of solid solution of $PbTiO_3-CaTiO_3$. At the frequency of 1 MHz, the dielectric constant of glass frit crystallized was in the range of 11~16 and the dielectric loss less than 0.020. But the glass frit containing 15wt% PbO had the dielectric constant of 17~26 and loss of 0.010~0.015 because of crystal phase of solid solution of $PbTiO_3-CaTiO_3$.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Characteristics of Embedded R, L, C Fabricated by Using LTCC-M Technology and Development of a PAM for LMR thereby (LTCC-M 기술을 이용한 내부실장 R, L, C 수동소자의 특징 및 LMR용 PAM개발)

  • 김인태;박성대;강현규;공선식;박윤휘;문제도
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • Low temperature co-fired ceramics on metal (LTCC-M) is efficient for embedding passive components with good tolerance in a module due to the dimensional stability in x and y directions by the constraint of metal core during the firing. In addition, the radiation noise can be reduced by metal core. In this paper, embedded passive components were introduced and a power amplifier module (PAM) fabricated by using the passive components was explained. The embedded passive components in test patters showed the tolerance of 10~20% and the good repeatability in tolerance of embedded passives was maintained in module fabrication. The shortened traces in multi chip modules (MCMs) make the signal delay time decreased and the embedded passives simplify the packaging processes owing to the less solder points, which enhance the electrical performance and increase the reliability of the modules. The LTCC-M technology is one of the promising candidates for RF application and is expected to expand its applications to power and high performance devices.

  • PDF