• Title/Summary/Keyword: low temperature condition

Search Result 2,366, Processing Time 0.034 seconds

The Effect on Strength Development of Cement Mortar using Accelerators for Freezing Resistance with the Curing Condition (양생조건이 내한촉진제를 사용한 시멘트 모르타르의 강도증진에 미치는 영향에 관한 연구)

  • Won, Cheol;Kim, Dong-Seok;Park, Sang-Joon;Lee, Sang-Soo;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods for resolving these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerators for freezing resistance. In this study, we investigate the effect on strength development of cement mortar using accelerators for freezing resistance with the variance curing condition. As the result of this study, the mortar using accelerators for freezing resistance show that continuously strength development in curing condition of -5$^{\circ}C$. And compressive strength under the variance temperature condition was higher than fixed temperature condition in same maturity.

  • PDF

Development of the Wireless Technique for Health Monitoring of Superconducting Motor (초전도 모터의 상태진단을 위한 데이터 신호 무선처리 기법개발)

  • Seo, K.C.;Lee, M.R.;Lee, J.H.;Kwon, Y.K.;Shon, M.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.829-834
    • /
    • 2004
  • This research is to development advanced health(condition) monitoring system of superconducting motors. Development of advanced condition monitoring systems offers the prospect of improved performance, assessment, and operation, simplified design, enhanced safety, and reduced overall cost of advanced and next generation superconducting motor. For advanced and next generation superconducting motor design, the opportunity exists to develop and implement real-time and continuous monitoring systems by integrating wireless and computational technique. Generally, condition monitoring and control of temperature is essential for managing the superconducting motor components, rotor and structures. In this research, development of advanced monitoring in low temperature and high speed operating environments offers the potential to greatly improve the control of harsh environments. In conventional method, slip rings have been used to acquire data from these sensors. However, the increase of sensors leads to vibration of the rotation axis and noise signals due to kinematics contact. In this study, the wireless data acquisition technique was employed to develop more stable monitoring system adequate for high speed rotating system.

  • PDF

Electro-optical Characteristics of LED Flat Light Source in Low Temperature Condition (LED 평판조명의 저온환경에서의 전기광학특성)

  • Han, Jeong-Min;Seo, Dae-Shik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • Recently, LCD (liquid crystal display) industry is needed to goods of high reliability and wide range temperature condition and it is interested in products for extremely cold condition without failure of light-up. In this experiment, we made the LED backlight unit for Automotive-navigation under the extremely cold condition. And for making this backlight unit, we used to eight side emitting type white LEDs with 3W high power LED. We could know that this backlight unit releases to 18,000 nit in 24W power consumption and start up voltage time is under the 1ms in the ambient temperature at -40.

Development of High-Frequency Induction Heating Method Using Adhesive Waterproofing Sheet Laminated with Aluminum Sheet (알루미늄 박판 점착 복합 방수시트를 이용한 고주파 유도가열 방수공법 개발 평가 연구)

  • Kim, Yun Ho;Kim, Dong Bum;Park, Jin-Sang;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.111-114
    • /
    • 2011
  • Waterprooping Method with sheet need to study technology and multilateral verification considering the arctic conditions as low temperature and humidity, which is the result only considered of material aspects without environmental condition in construction But there are no measures up until now. To solve this problem by using high frequency induction heating method developed waterproof sheets, cold (5 ℃ or less) can be applied in a more stable environment, water-resistant materials and construction methods were studied for development. The results of the test showed that high frequency induction heating method is effective for usability in low temperature condition and securement of proper quality than existing Waterprooping Method with sheet need.

  • PDF

Canola Plant Growth Promotion by a Selected Plant Growth Promoting-Rhizobacteria, Burkholderia pyrrocinia Strain 13-1 in the Cold Condition (고활성 근권생육촉진균주 Burkholderia pyrrocinia 13-1에 의한 저온조건에서의 유채생육촉진)

  • Lee, Jae-Eun;Cho, Sang-Min;Cho, Young-Eun;Park, Kyung-Seok
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.262-266
    • /
    • 2009
  • Plant growth-promoting rhizobacteria (PGPR) are beneficial native soil bacteria that colonize plant roots and result in increased plant growth. The objective of this study was to determine the plant growth promotion in canola plants by selected PGPR strain 13-1 under low temperature condition. The seed treatment of strain 13-1 was enhanced plant height and root elongation on canola plant at low temperature condition. This result determined that a selected strain of PGPR can enhance plant growth and root propagation under extremely low temperature conditions. Thus, this PGPR strain extends their role on plant growth promotion on canola until low temperature condition for practical applications.

QTL Mapping of Cold Tolerance at the Seedling Stage using Introgression Lines Derived from an Intersubspecific Cross in Rice

  • Park, In-Kyu;Oh, Chang-Sik;Kim, Dong-Min;Yeo, Sang-Min;Ahn, Sang-Nag
    • Plant Breeding and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Low-temperature stress is an important factor controlling the growth and development of rice (Oryza sativa L.) in temperate region. In this study, a molecular linkage map consisting of 136 SSR markers was employed to identify QTL associated with cold tolerance at the seedling stage. 80 recombinant inbred lines (RILs) from an intersubspecific cross between Milyang23 (O. sativa ssp. Indica) and Hapcheonaengmi3, a japonica weedy rice and the parents were evaluated for leaf discoloration and SAPD value of seedlings. Rice plants were grown for 15 days in the low-temperature condition (13/20℃ day/night) and the control condition (25/20℃ day/night) in the growth chamber. The degree of leaf discoloration showed a highly significant correlation with the SPAD value in the low-temperature plot (r = -0.708, P < 0.0001). A total of four QTLs for SPAD were identified and the phenotypic variance explained by each QTL ranged from 5.4 to 16.0%. Two QTLs detected in the control condition were located on chromosomes 2 and 5, respectively. Two QTL on chromosomes 1 and 4 were detected at the low-temperature condition and Hapcheonaengmi3 alleles increased the SPAD values at these loci. Substitution mapping was conducted to delimit the position of qSPA-4 using introgression lines derived from the same cross. Results indicated that qSPA-4 was located in a 810-Kb region flanked by RM16333 and RM16368. The results indicated that Hapcheonaengmi3 contains QTL alleles that are likely to improve cold tolerance of Indica rice.

Low Temperature Effects on the Nitrification in a Nitrogen Removal Fixed Biofilm Process Packed with SAC Media

  • Jang, Se-Yong;Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • A fixed biofilm reactor system composed of anaerobic, anoxic(1), anoxic(2), aerobic(1) and aerobic(2) reactor was packed with synthetic activated ceramic (SAC) media and adopted to reduce the inhibition effect of low temperature on nitrification activities. The changes of nitrification activity at different wastewater temperature were investigated through the evaluation of temperature coefficient, volatile attached solid (VAS), specific nitrification rate and alkalinity consumption. Operating temperature was varied from 20 to $5^{\circ}C$. In this biofilm system, the specific nitrification rates of $15^{\circ}C$, $10^{\circ}C$ and $5^{\circ}C$ were 0.972, 0.859 and 0.613 when the specific nitrification rate of $20^{\circ}C$ was assumed to 1.00. Moreover the nitrification activity was also observed at $5^{\circ}C$ which is lower temperature than the critical temperature condition for the microorganism of activated sludge system. The specific amount of volatile attached solid (VAS) on media was maintained the range of 13.6-12.5 mg VAS/g media at $20{\sim}10^{\circ}C$. As the temperature was downed to $5^{\circ}C$, VAS was rapidly decreased to 10.9 mg VAS/g media and effluent suspended solids was increased from 3.2 mg/L to 12.0 mg/L due to the detachment of microorganism from SAC media. And alkalinity consumption was lower than theoretical value with 5.23 mg as $CaCO_3$/mg ${NH_4}^+$-N removal at $20^{\circ}C$. Temperature coefficient (${\Theta}$) of nitrification rate ($20^{\circ}C{\sim}5^{\circ}C$) was 1.033. Therefore, this fixed film nitrogen removal process showed superior stability for low temperature condition than conventional suspended growth process.

Plasma Surface Treatment of the Polymeric Film with Low Temperature Process (저온프로세스를 이용한 고분자필름의 플라즈마 표면처리)

  • Cho, Wook;Yang, Sung-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.486-491
    • /
    • 2008
  • The plasma processing is applied to many industrial fields as thin film deposition or surface treatment technique. In this study, we investigated large-area uniformed surface treatment of PET film at low temperature by using Scanning Plasma Method(SPM). Then, we measured difference and distribution of temperature on film's surface by setting up a thermometer. We studied the condition of plasma for surface treatment by examining intensity of irradiation of uniformed plasma. And we compared contact angles of treated PET film by using Ar and $O_2$ plasma based low temperature. In our result, surface temperature of 3-point of treating is low temperature about $22^{\circ}C$, in other hands, there is scarcely any variation of temperature on film's surface. And by using Ar plasma treatment, contact angle is lower than untreatment or $O_2$ plasma treatment. In case of PET film having thermal weak point, low temperature processing using SPM is undamaged method in film's surface and uniformly treated film's surface. As a result, Ar plasma surface treatment using SPM is suitable surface treatment method of PET film.

Investigation into the Worst Stress Condition for an Accelerated Life Test of a Compressor in Refrigerators - Acceleration Factor and the Reducible Test Time under Low Temperature - (냉장고용 압축기의 가속수명시험을 위한 가혹조건 탐색 - 저온 가혹조건에서의 가속계수와 단축 시험기간 -)

  • Jung, Y.M.;Joo, W.J.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.43-48
    • /
    • 2012
  • Generally accelerated life test is well known as one method to reduce reliability qualification test period. This test is conducted under the higher stress condition than normal condition. So it can save the test time by calculating the acceleration factor from the relationship between the worst stress condition and normal condition. This paper investigates the worst stress condition for the accelerated life test to increase the acceleration factor. Especially, we focused on the method to obtain effective acceleration factors under the worst stress condition. Moreover, we considered how to decide the worst stress condition by looking for the operating limit of this system. The acceleration factor can be estimated from the ratio of the kinematic viscosity in the normal condition and the worst stress condition, the lowest temperature, by using Arrhenius relationship. Through some experiments for a refrigerator's compressor, we were able to confirm how to increase acceleration factors and how to reduce the reliability qualification test period with minimum samples.

A Numerical Analysis of the NO Emission Characteristics in $CH_4/Air$ Counterflow Premix Flame (메탄/공기 대향류 예혼합화염의 NO 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.22-27
    • /
    • 2004
  • Lean premix combustion is a best method in low $NO_x$ gas turbine combustor and we must know the characteristics of NO emission in high temperature and pressure condition in premix flame. Numerical analysis was performed to investigate the NO emission characteristics by adopting a counterflow as a model problem using detailed chemical kinetics. Methane $(CH_4)$ was used as a test fuel which is the main fuel of natural gas. The tested parameters were stretch rate, equivalence ratio, initial temperature, and pressure in premix flame. Results showed that NO emission was high in low stretch rate, near stoichiometric equivalence ratio, high initial temperature, and high pressure. Also, the pressure effect was sensitive in high temperature condition.

  • PDF