• Title/Summary/Keyword: low temperature condition

Search Result 2,366, Processing Time 0.03 seconds

Effect of Storage and Marketing Condition on Biochemical Property Changes of Garlic (Allium sativum L.) (마늘(Allium sativum L.)의 생화학적 변화에 대한 저장 및 유통조건의 영향)

  • 최선태;장규섭
    • Food Science and Preservation
    • /
    • v.5 no.2
    • /
    • pp.111-117
    • /
    • 1998
  • Biochemical property changes of garlic during various storages and marketing after storage were investigated. Content of enzymatic pyruvic acid increased by room and low temperature storage but decreased by CA and MA storage. Fructan contents decreased rapidly by low temperature storage, but restrained decrement by CA and MA storage. Free sugar increased during storage, but did slowly by room temperature storage. Green pigment development was observed when garlics stored for 90days at low temperature were processed into crushed form. This discoloration was small for garlics stored in CA and MA, and never occurred for room temperature stored garlics. When marketed after storage, content of enzymatic pyruvic acid decreased in garlic stored in room and low temperature storage, but increased in garlics which decreased during CA and MA storage. Fructan contents deceased but free sugar contents continuously increased with marketing period. Green pigment development decreased in crushed garlic after 30days at room temperature marketing, but increased in low temperature marketing with marketing time progress.

  • PDF

A Study on Combusiton Properties of Natural Fiber Dust (천연섬유분진의 연소특성에 관한 연구)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.3-10
    • /
    • 1999
  • We had investigated combustion properties of natural textile dusts. Decomposition properles of natural textile dusts scavenged by precipitator of spinning factoη were investigated using D DSC(Differential Scanning Calorimeter) and TGA(Thermogravimetric Analysis) by temperature c changes. Combustion pro야rties of natural textile according to size distribution and amount were c checked as temperature variation according to time using spontan$\infty$us ignition apparatus. M Moreover, combustion properties with blowing or without blowing condition were checked in order to investigate combustion prope$\pi$ies in spontaneous ignition apparatus according to flow c condition of air. As results of thermal analyses, increase in r머sing tern야:rature causes initial smold벼ng t temperature to move towards low temperature section 뻐d i띠디떠 smoldering temperature was d de$\sigma$eased more remarkably in atmosphere than in inert gas and that condition allowed heating v value to increase considerably. In addition, as amount and size distribution of natural textile d dusts were increased, i띠ti머 smoldering temperature was lowered. All of combustion forms were s smoldering combustion. Initial smold밍ing temperature was low more slightly with blowing c condition than without blowing condition in sp$\alpha$ltaneoUS ignition apparatus, which condition m made heatim;!; value high.

  • PDF

Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

Factor Analysis of the Relation Between Land Cover Ratio of Green Spaces and Temperature (공원녹지의 토지피복비율과 기온간의 요인분석)

  • Yoon, Yong-Han;Park, Bong-Ju;Kim, Won-Tae;Park, Sun-Young
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • The present study examined the relation between land cover condition and temperature in various types of urban green spaces. The diagram of temperature distribution showed that high-temperature zones are formed around paved areas, and low temperature zone around planted areas and grassy areas. Even in planted areas where low-temperature zones were formed, temperature was different according to hierarchical structure. That is, temperature was relatively low in areas covered with arbor + sub-arbor. With regard to land cover ratio, the increase of planted areas and grassy areas had an effect on the fall of temperature and the effect was higher in order of planted areas and grassy areas. On the contrary, paved areas and bare areas had an effect on the rise of temperature. According to the results of factor analysis, in case of the highest temperature, planted area and grassy area were put together into a factor lowering temperature, paved area and temperature into a factor raising temperature, and bare area alone into a factor of low significance. In case of the lowest temperature, grassy area and bare area were put together into a factor, and the validity of the factor analysis was proved by the analysis of urban heat islands. An increase in the number of trees by height was effective in lowering temperature, and the effect was high in order to arbor and sub-arbor, and the source of coldness in planted area was tall trees.

A Study on Combustion Characteristics of Starch (전분 분진의 연소특성에 관한 연구)

  • 김정환;현성호;이창우
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-5
    • /
    • 2001
  • We had investigated combustion properties of starch. Decomposition of starch scavenged by pre-cipitator of spinning factory with temperature were investigated using DSC and TGA. Combustion properties of starch according to amount were checked as temperature variation according to time using spontaneous ignition apparatus. Moreover, combustion properties with blowing or without blowing condition were checked in spontaneous ignition apparatus. As results of thermal analyses, increase in raising temperature causes initial smoldering temperature to move towards low temperature section. In addition, as amount of starch was increased, initial smoldering temperature was lowered. All of combustion forms were smoldering combustion. Initial smoldering temperature was low more slightly with blowing condition than without blowing condition in spontaneous ignition apparatus, which condition made heating value high.

  • PDF

Biochemical Adaptation of Pinus pumila on Low Temperature in Mt. Seorak, Korea

  • Kim Chan-Soo;Han Sim-Hee;Lee Wi-Young;Lee Jae-Cheon;Park Young-Ki;Oh Chang-Young
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.217-224
    • /
    • 2005
  • We tested the hypothesis that alpine plants have special physiological and biochemical mechanisms in addition to their structural adaptation in order to survive under extreme conditions. The photosynthetic organs of Pinus pumila were used to examine the seasonal changes in sugar concentration, antioxidative enzyme, and lipid peroxidation. The concentrations of sucrose, glucose, fructose and reducing sugar were the highest in the leaves in April. But sugar contents in buds and inner barks did not respond sensitively on temperature change. Meanwhile superoxide dismutase (SOD) activity responded sensitively on the change of temperature and SOD in all tissues maintained high activity in April. Meanwhile anthocyanin content increased rapidly in June but the increase of anthocyanin content was not enough to prevent their tissues from the damage by the exposure of high temperature or other stress. In conclusion, under low temperature condition, P. pumila increased the concentration of soluble sugars and SOD activity in their tissues in order to overcome extreme environmental condition. But in summer, these stress defense system against high temperature might be disturbed slightly. This results in the increase of malondialdehyde (MDA) contents in three tissues by lipid peroxidation.

  • PDF

Relationships between MgO Manufacturing condition and Misfiring in low temperature (저온에서 AC PDP의 MgO 증착 조건과 방전 안정성 대한 연구)

  • Ryu, S.N.;Shin, M.K.;Kim, Y.K.;Shin, J.H.;Yu, C.H.;Kim, D.H.;Lee, H.J.;Park, C.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.153-157
    • /
    • 2002
  • This paper deals with the relationships between MgO manufacturing condition and misfiring at low temperature. The characteristics of MgO are affected by substrate temperature and MgO deposition current. In this study. the. substrate temperature was varied from $100^{\circ}C$ to $200^{\circ}C$. And the MgO deposition current was varied from 5mA to 20mA. As a result. the misfiring at low temperature was decreased in the panels with substrate temperature $200^{\circ}C$ and MgO deposition current 5mA. These results may be explained that the higher substrate temperature and lower MgO deposition current makes the denser film formation.

  • PDF

Rearing Temperature and Density Effects on the Number of Bacterial and Fungal Colonies in Metamorphosed Dybowski's Frogs (Rana dybowskii)

  • Kim, Jong-Sun;Choi, Woo-Jin;Park, Il-Kook;Koo, Kyo-Soung;Kang, Hui-Beom;Kwon, Oh-Sung;Lee, Seung-Hyeon;Choi, Hye-Ji;Lee, Jung-Hyun;Lee, Jin-Gu;Park, Dae-Sik
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.1
    • /
    • pp.61-65
    • /
    • 2018
  • To know if small changes in rearing water temperature and density affect the number of bacterial and fungal colonies in metamorphosed frogs, Dybowski's frog tadpoles were reared from Gosner 25-26 stages at either low ($1^{\circ}C$ low to ambient water temperature), ambient, or high ($1^{\circ}C$ high) water temperature (each 15 tadpoles in 20 L water) condition and at either low (10 tadpoles/20 L water), medium (20 tadpoles), or high (30 tadpoles) density condition. Immediately after metamorphosis, we sampled bacteria and fungi from skin, liver, and heart of six metamorphosed frogs, randomly selected for each treatment group. After separate incubation of bacteria and fungi on 3M Petrifilm plates, we counted the number of bacterial and fungal colonies appeared on the plates and compared the numbers among the temperature and density treatment groups. For temperature treatment, high-temperature group had fewer bacterial colonies, while low-temperature group had more fungal colonies than the other two groups. For density treatment, low-density group had fewer bacterial colonies than the other two groups, but the number of fungal colonies were not different among the groups. Our results suggest that small increased rearing water temperature and lowered rearing density could potentially reduce pathogens in farming frogs.

Effects of UV light irradiation condition and imidization temperature for the generation of pretilt angle on polyimide surfaces (폴리이미드 표면에서의 프리틸트각 발생에 대한 UV조사 조건과 이미드화온도의 영향)

  • Yu, Mun-Sang;Seo, Dae-Shik;Hwang, Jeoung-Yeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.61-64
    • /
    • 1998
  • We have investigated the effects of ultraviolet (UV) light irradiation condition and imidization temperature for the generation of pretilt angle in nematic liquid crystal (NLC) on the two kinds of the polyimide (PI) surfaces. High pretilt angle of NLC is generated with oblique p-polarized UV light irradiation of 30$^{\circ}$ on PI surface for 20 min. Also, the high pretilt angle of NLC is generated with oblique p-polarized UV light irradiation of 10-30$^{\circ}$ on PI surface at 20min. The pretilt angle of NLC decreases with increasing the imidization temperature on all rubbed PI surfaces ; the pretilt angle of NLC with oblique p-polarized UV light irradiation of 30$^{\circ}$on PI surface decreases with increasing the imidization temperature. The high pretilt angle of NLC is observed due to high photo-depolymerization reaction by low surface energy at low imidization temperature. We suggest that the pretilt angle of NLC is strongly attributed to the photo-depolymerization reaction with the UV light irradiation condition and imidization temperature.

  • PDF

The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor (마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성)

  • Son, M.G.;Ahn, K.Y.;Lee, H.S.;Yoon, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF