• 제목/요약/키워드: low temperature and vacuum

검색결과 823건 처리시간 0.03초

정지궤도 위성의 열평형 시험 모델링 및 예비 예측 (THERMAL BALANCE MODELLING AND PREDICTION FOR A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.142-147
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication, ocean and meteorological observations. It will be tested under vacuum condition and very low temperature in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels such as north and south panels. They will be controlled from 90K to 273K by circulating GN2 and LN2 alternatively according to the test phases, while the shroud of the vacuum chamber will be under constant temperature, 90K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

Multifunctional Indium Tin Oxide Thin Films

  • 장진녕;장윤성;윤장원;이승준;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.162-162
    • /
    • 2016
  • We present multifunctional indium tin oxide (ITO) thin films formed at room temperature by a normal sputtering system equipped with a plasma limiter which effectively blocks the bombardment of energetic negative oxygen ions (NOIs). The ITO thin film possesses not only low resistivity but also high gas diffusion barrier properties even though it is deposited on a plastic substrate at room temperature without post annealing. Argon neutrals incident to substrates in the sputtering have an optimal energy window from 20 to 30 eV under the condition of blocking energetic NOIs to form ITO nano-crystalline structure. The effect of blocking energetic NOIs and argon neutrals with optimal energy make the resistivity decrease to $3.61{\times}10-4{\Omega}cm$ and the water vapor transmission rate (WVTR) of 100 nm thick ITO film drop to $3.9{\times}10-3g/(m2day)$ under environmental conditions of 90% relative humidity and 50oC, which corresponds to a value of ~ 10-5 g/(m2day) at room temperature and air conditions. The multifunctional ITO thin films with low resistivity and low gas permeability will be highly valuable for plastic electronics applications.

  • PDF

Nutrient compositions of Korean mulberry fruits (Morus sp.) dried with low temperature vacuum dryer using microwave

  • Kim, Hyun-Bok;Kweon, HaeYong;Ju, Wan-Teak;Jo, You-Young;Kim, Yong-Soon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제42권1호
    • /
    • pp.14-20
    • /
    • 2021
  • Mulberry was dried with low temperature vacuum dryer using microwave. The nutritional compositions of microwave-dried mulberry including proximate composition, sugar content, mineral content, total phenolic, flavonoids, and anthocyanin, beta-carotene, vitamin C, and amino acid composition were measured. Sugar contents of mulberry were 42.6 mg/100g (Cheongilppong) and 43.27 mg/100g dw (Gwasang No. 2). The main components of mulberry sugars were fructose and glucose. Mineral analysis showed that K, P, Ca, and Mg were abundant regardless of mulberry cultivars.

Fabrication of ZnO inorganic thin films by using UV-enhanced Atomic Layer Deposition

  • 송종수;윤홍로;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.312.1-312.1
    • /
    • 2016
  • We have deposited ZnO thin films by ultraviolet (UV) enhanced atomic layer deposition using diethylznic (DEZ) and water (H2O) as precursors with UV light. The atomic layer deposition relies on alternating dose of the precursor on the surface and subsequent chemisorption of the precursors with self-limiting growth mechanism. Though ALD is useful to deposition conformal and precise thin film, the surface reactions of the atomic layer deposition are not completed at low temperature in many cases. In this experiment, we focused on the effects of UV radiation during the ALD process on the properties of the inorganic thin films. The surface reactions were found to be complementary enough to yield uniform inorganic thin films and fully react between DEZ and H2O at the low temperature by using UV irradiation. The UV light was effective to obtain conductive ZnO film. And the stability of TFT with UV-enhanced ZnO was improved than ZnO by thermal ALD method. High conductive UV-enhanced ZnO film have the potential to applicability of the transparent electrode.

  • PDF

Footprints of water molecules on Si(001) and co-adsorption configurations obtained via low temperature scanning tunneling microscopy

  • Tham, Tran Thi;Son, Lee-Seul;Oh, Suhk-Kun;Kang, Hee-Jae;Kim, Han-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.86-86
    • /
    • 2010
  • Water adsorption on Si(001)-c($4{\times}2$) surface is investigated at low temperature by using scanning tunneling microscope (STM) and ab initio pseudopotential calculations. $H_2O$ configurations of single and cluster of two molecules reveal "Y", "X" and "W" depressions as footprints on the surface. Atomic structures of $H_2O$ molecules, which are dissociatively adsorbed on the Si(001)-c($4{\times}2$) surface, are studied with simulated and STM images of the filled states. The generation processes of the growth configurations are systematically considered with elapsed time.

  • PDF

Reduction of Vacuum Sublimation by Ion Beam Treatment for e-beam Deposited SiC Films

  • Kim, Jaeun;Hong, Sungdeok;Kim, Yongwan;Park, Jaewon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.138.1-138.1
    • /
    • 2013
  • We present the low temperature (${\leq}1,000^{\circ}C$) vacuum sublimation behavior of an e-beam evaporative deposited on a SiC film and a method to reduce the vacuum sublimation through an ion beam process. The density of the SiC film deposited using the e-beam evaporation method was ~60% of the density of the bulk source material. We found that the sublimation became appreciable above ${\sim}750^{\circ}C$ under $1.5{\times}10^{-5}$ torr pressure and the sublimation rate increased with an increase in temperature, reaching ~70 nm/h at $950^{\circ}C$ when the coated sample was heated for 5 h. When the film was irradiated with 70 keV N+ ions prior to heating, the sublimation rate decreased to ~23 nm/h at a fluence of $1{\times}10^{17}\;ions/cm^2$. However, a further increase in fluence beyond this value or an extended heating period did not change (decrease or increase) the sublimation rate any further.

  • PDF

Molecular Layer Deposition of Organic/Inorganic Nanohybrid Dielectrics for OTFTs

  • 이병훈;이광현;임성일;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.56-56
    • /
    • 2010
  • We report a low-temperature fabrication of organic/inorganic nanohybrid dielectrics for organic thin film transistors. The self-assembled organic layers (SAOLs) were grown by repeated sequential adsorptions of C=C-terminated alkylsilane and metal (Al or Ti) hydroxyl with ozone activation, which was called "molecular layer deposition (MLD)". The $TiO_2$ and $Al_2O_3$ inorganic layers were grown by ALD, which relies on sequential saturated surface reactions resulting in the formation of a monolayer in each sequence and is a potentially powerful method for preparing high quality multicomponent superlattices. The MLD method combined with ALD (MLD-ALD) was applied to fabricate SAOLs-$Al_2O_3$-SAOLs-$TiO_2$ nanohybrid superlattices on polymer substrates at relatively low temperature. The MLD method is an ideal fabrication technique for various flexible electronic devices.

  • PDF

고온 분무열분해 공정에 의한 녹색 발광의 BAM:Mn 형광체 합성 (Preparation of Green-Light Emitting BAM:Mn Phosphor Particles by High Temperature Spray Pyrolysis)

  • 주서희;구혜영;김도엽;강윤찬
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.496-502
    • /
    • 2005
  • Green-light emitting $BaMgAl_{10}O_{19}:Mn^{2+}$ (BAM:Mn) phosphor particles were prepared by spray Pyrolysis. The effect of reactor temperature and flow rate of carrier gas in the spray Pyrolysis on the morphology, crystallinity and photoluminescence characteristics under vacuum ultraviolet were investigated. The morphology of the as-Prepared Particles obtained by spray Pyrolysis had spherical shape and non-aggregation characteristics regardless of the reactor temperature. The spherical shape of the as-prepared Particles obtained by spray pyrolysis at low temperature disappeared after Post-treatment. On the other hand the as-Prepared Particles obtained by spray Pyrolysis at $1600^{\circ}C$ maintained spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ for 3 h under reducing atmosphere. The BAM:Mn Phosphor Particles Prepared by spray Pyrolysis at different reactor temperatures had pure crystal structure and high photoluminescence intensities under vacuum ultraviolet after post-treatment. BAM:Mn phosphor particles prepared by spray Pyrolysis at low How rate of carrier gas had complete spherical shape and filed morphology and high photoluminescence intensity after post-treatment under reducing atmosphere.

Laser Thomson Scattering for Measuring Plasma Temperature and Density in ICP

  • 서병훈;유신재;김정형;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.144-144
    • /
    • 2011
  • Diagnostics of plasma density and temperature play an important role for monitoring plasma processing and Laser Thomson scattering is a one of the most accurate diagnostic technique for measuring plasma density and temperature because of none-perturbation to plasma among various diagnostic techniques invented to measure plasma density and temperature. I will briefly review Laser Thomson scattering experiment performed in KRISS and difficulties for measuring the electron velocity distribution such as Gaussian due to low signal-to-noise ratio with showing results that we got until now. This work is an intermediate step in a process that we will get a reliable data which shows physical phenomenon of plasma compared with other diagnostic techniques and results.

  • PDF