• Title/Summary/Keyword: low strength concrete

Search Result 1,241, Processing Time 0.023 seconds

Experimental Study on Fracture Behavior of Low-Heat Concrete, by Three-Point Bent Test (3점 휨시험에의한 저발열콘크리트의 파괴거동에 곤한 실험적 연구)

  • 조병완;박승국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.199-204
    • /
    • 1998
  • To analysis the failure character of Low-Heat concrete which is used to prevent the thermal crack caused by hydration heat, static loading test was performed by this test method, "Determination of the Fracture Energy of Motar and Concrete by Means of Three-Point Band Tests on Notched Beam" (suggested by RILEM 50-FMC Committe). This study compared and analysised the fracture energy of Mode I (opening mode), the most general pattern in the view of water-cemente ratio(W/C), compressive strength and age of Ordinary Portland Concrete and Low-Heat Concrete under the same mixture. The test results show that the case of Ordinary Portland Concrete and Low-Heat Concrete, low Water-Cemente ratio(W/C) cause the increase of fracture energy, and high failure-strength decrease failure-deflection, and the fracture energy of Low-Heat Concrete is similar to Ordinary Portland Concrete as the age increase. increase.

  • PDF

Properties of the high strength and self-compacting concrete according to the replacement ratio of fly ash (플라이애쉬의 치환율에 따른 고강도 자기충전 콘크리트의 특성)

  • Kwon, Yeong-Ho;Lee, Hyun-Ho;Lee, Hwa-Jin;Ha, Jae-Dam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.85-88
    • /
    • 2006
  • This study describes the optimum mix proportion of the high strength and self-compacting concrete placed in main structures of LNG above tank. This concrete requires high strength level about $60{\sim}80MPa$, low hydration heat, balance between workability and consistency without vibrating in the actual work. For this purpose, low heat portland cement and fly ash are selected and design factors including water-binder ratio, replacement ratio of fly ash are tested. As experimental results, low heat portland cement shows lower the confined water ratio than another cement type and the optimum replacement ratio of fly ash in order to improve properties of the binder-paste shows 10% by cement weight considering test results of the confined water ratio$({\beta}p)$. Also, flowability of the high strength and self-compacting concrete by using fly ash about $10{\sim}20%$ is improved. The replacement ratio of fly ash 10% and water-binder ratio $25{\sim}27%$ are suitable to the design strength 80MPa and cost, In case of the design strength 60MPa, the replacement ratio of fly ash and water-binder ratio show 20% and $25{\sim}30%$ separately. Based on the results of this study, the optimum mix proportions of the high strength and self-compacting concrete will be applied to the construction of LNG above tank as a new type.

  • PDF

The Fundamental Study on Development of Concrete-Product by Using Recycled Concrete Powder (재생미분말을 사용한 콘크리트 제품 개발에 대한 기초적인 연구)

  • Sun Joung-Soo;Kim Ha-Seok;Kwag Eun-Gu;Jun Myoung-Hoon;Kim Bong-Ju;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.19-22
    • /
    • 2006
  • The quantity of Recycled concrete powder is increased, because it hal been ever so often crushing for production of a good quality recycled aggregates This Study is on the Development of Concrete-Product by Using Recycled Concrete Powder and alto for know performance of concrete-producted having low water contents and it is to know for all of performance of concrete-producted having low water contents The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa But It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading. The conclusions of this study are following. The use of replacement cement is not effective, because it has strengh of less than 10MPa. It is possible to develop high strength concrete-producted having 39MPa above compressive strength by using recycled concrete powder. Because strength enhancement effects by recycled concrete powder are responsible to optimum grading.

  • PDF

The Correlation between Mixture Distress and Strength of Bituminous Concretes

  • 김광우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.67-73
    • /
    • 1990
  • Many distress mechanisms in pavement are known to be caused by the poor mechanical properties of bituminous concretes. Among many mechanical properties, tensile strength is one of the more important indicates that represent the resistance of pavement to traffic loading. However, there has been no relationship established between the strength and distress mechanisms. Therefore, this study was conducted to evaluate a correlation between the tensile strength value and the intensity of distress in bituminous concrete. Distress data were collected from an extensive field investigation over 77km of a four-lane highway in South Carolina, USA, and from laboratory prepared specimens in two phases of study. Strength data were obtained from a total of more than 400 field cores taken from the same highway and from 640marshall specimens of surface course mixture prepared in the laboratory. These data were analyzed using statistical test techniques. It was found from statistical analyses that the tensile strength of bituminous concrete had a strong relation with the pavement condition in the field. In the analysis of rutting and stripping, low strength concrete showed a higher distress rate in the mixture, and mixtures under distress in the field showed obviously reduced strength values. Stripping was found to be the most significant distress mechanism that was correlated with low strength bituminous concrete. Rutting appeared more frequently in a low strength pavement section of the highway as a sign of failure due to traffic loading.

  • PDF

The Application of High Strength Concrete in Batcher Plant and its Workability (레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구)

  • Kim, Jeong-Sik;Kim, Bong-Hyun;Jung, Jin;Lee, Jae-Sam;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

Strength Estimation of the High Strength Concrete by using Rock Test Hammer (암반용 테스트해머 사용에 의한 고강도콘크리트의 강도추정)

  • Seo, Yun-A;Nam, Kyung-Yong;Park, Soo-Hwa;Kim, Seong-Deok;Lim, Nam-Gi;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.77-79
    • /
    • 2012
  • This paper intends to review possible application in the high strength area through compressive strength estimation of the simulated high strength concrete member using Rock Test Hammer and suggest it as a reference data for the strength estimation technique of the ultra high strength concrete in the future. From the results of our test, in the low strength area less than 15MPa and normal strength area in 15~60MPa, as shown on the existing studies, it is indicated that P Type Schmidt Hammer in the low strength area and N Type Schmidt Hammer in the normal strength area have high correlation of rebound-compressive strength. As the Rock Test Hammer indicated more or less reduced accuracy in the low strength area and the normal strength area but high correlation on the high strength area (50~100MPa) defined on this test, it is determined that it would be possible to make the fastest and simplest compressive strength estimation on the site where the high strength concrete is applied.

  • PDF

An Experimental Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도 콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 실험적 연구)

  • 이승한;배재길;이종석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.203-208
    • /
    • 1994
  • These tests were conducted to get a device high strength concrete products in factory using admixtures for high strength concrete. The superplasticzer was used to compensate low slump of base concrete keeping its slump up about $6\pm1cm$. To examine the property for strength revelation of concrete using admixtures for high strength concrete, steam and standard curing were compared each other. Test results show that admixtures for high strength concrete is effective in steam curing and compressive strength 500kgf/$\textrm{cm}^2$ is obtained at one day, 650kgf/$\textrm{cm}^2$ at 28days as added to concrete at the ratio of 10-15%, and 740kgf/$\textrm{cm}^2$ at the ratio of 30%. Therefore admixtures for high strength concrete is effective in steam curing and make it possible to get high strength concrete using only steam curing not using autoclave curing.

  • PDF

Comparison Study on Nondestructive Strength Equation Based on Probability for Bridges (확률론적 방법을 적용한 도로교량의 비파괴 압축강도식 평가)

  • Kim, Hun-Kyom
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.39-46
    • /
    • 2018
  • PURPOSES: This study is to estimate nondestructive strength equation based on probability for bridges using field test data. METHODS : In this study, a series of the field inspection and the test have been performed on 297 existing bridges, in order to evaluate the bridges, based on the test results of the in-depth inspection, and the estimated strengths by means of the nondestructive strength equations are analyzed and compared with results of the core specimen strengths. RESULTS : According to results of analyses, In case of standard design compressive strength of concrete is 18MPa, 21MPa, similar reliability of RILEM equation were 0.89~0.90, but in case of standard design compressive strength of concrete is 35MPa, 40MPa were 0.4~0.56. According to standard design compressive strength of concrete is 40MPa, similar reliability of ultrasonic pulse velocity method equation were 0.56. CONCLUSIONS :RILEM equation had high similar reliability than other equation in case of standard design compressive strength of concrete is 18MPa, 21MPa, but had low similar reliability than other equation in case of standard design compressive strength of concrete is 35MPa, 40MPa. and ultrasonic pulse velocity method equation had low similar reliability than other equation in case of standard design compressive strength of concrete is 40MPa.

An Experimental Study on Compressive Strength of Lightweight Concrete made of Polystyrene Foam Balls (Polystyrene Beads를 이용한 경량콘크리트의 강도특성에 관한 실험적 연구)

  • Lee, Kyeong-Dong;Han, Jae-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.155-160
    • /
    • 1999
  • Recently, the study on mix design of lightweight concrete using the polystyrene foam balls is put into practice from the viewpoint to grade up the quality of concrete and recyclable usage of industrial by products. Polystyrene aggregate concrete, PAC, can be used as structural concrete in low strength application. For instance, PAC could be used in the middle part of sandwich panel where stresses are generally low and in the case of grid-type reinforcement where it does not need high bond strength but little compressive strength to resist the pressure of transverse reinforcement. From this point of view, the authors discussed the influence of fluidity and compressive strength of concrete by the difference of the volume percentage of polystyrene foam balls and water cement ratio.

  • PDF