• Title/Summary/Keyword: low rise buildings

Search Result 390, Processing Time 0.03 seconds

Seismic Response Characteristics of Low-Rise R/C Buildings (저층 철근콘크리트 건물의 지진응답특성)

  • Lee Kang Seok;Oh Jae-Keun;Choi Chang Sik;Lee Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.223-226
    • /
    • 2005
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise R/C buildings combined with extremely brittle, shear and flexural failure systems have influence on seismic capacities of the overall system, which is based on seismic response analysis of SDOF structural systems. To simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to two ground motion components. By analyzing these systems, interaction curves of required strengths of the triple systems for various levels of ductility factors are finally derived for practical purposes.

  • PDF

A Study on the Changes of Low-rise Residential Neighborhood with the Spread of Consumption-biased Cultural Space - Focused on the Yeonnam-dong Area - (문화소비공간의 확산에 따른 저층주거지 변화 특성 연구 - 연남동 일대를 중심으로 -)

  • Kim, Shinsung
    • Journal of the Korean housing association
    • /
    • v.27 no.4
    • /
    • pp.77-88
    • /
    • 2016
  • Low-rise Residential neighborhoods of Hongdae area, Garosu-gil, Samchung-dong, Itawon etc. are currently emerging new spaces for cultural consumption in the city. Nonetheless undiscerning excessive commercialization often results in monotonous urban space and deportation of residents and leaders of change; Due to commercialization and popularization recently this phenomenon is influencing surrounding low-rise residential neighborhoods. The main objective of this study is to examine how surrounding low-rise residential neighborhood transforms according to the expansion of culture-commerce spaces. Hongdae area's culture-commerce spaces and its expansion into Yeonnam-dong is investigated in specific. Especially attributes and main causes of transformation in physical and experiential space of neighborhood living facilities and residential buildings, when changed into culture-commerce related use is examined in detail. The expansion of culture-commerce space of Hongdae to Yeonnam-dong area has positive meaning in aspects of everyday experience. First, physical alteration of street-building relation increases direct and indirect contact of people. Contact opportunity carries important meaning in sense that it is prerequisite for next stage contact of network and exchange. Second, culture-commerce related programs provide the third place, where various leisure activities can take place. Attributes of transformation and positive meaning of culture-commerce spaces expanding its territory presents the need of management.

Prediction of skewness and kurtosis of pressure coefficients on a low-rise building by deep learning

  • Youqin Huang;Guanheng Ou;Jiyang Fu;Huifan Wu
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.393-404
    • /
    • 2023
  • Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.

AN EVALUATION OF ENERGY PERFORMANCE IN SUPER HIGH-RISE APARTMENT HOUSING WITH EXTERIOR WINDOW TYPES

  • Sang-Ho Lee;Yong-Ho Park;Jong-Chan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1637-1642
    • /
    • 2009
  • This study evaluates the energy performance of super high-rise residential buildings with e-QUEST simulation and calculates the annual cooling and heating load. The result of this study have concluded that the most influential factor is the characteristics of the window and also suggest the most efficient window system from the result of calculation of different glasses' cooling and heating load. The result of this study shows that The most efficient method to enhance the energy performance is to use low reflective 3 pairs Low-E glass and Low-E coating(inside of outer glass) pair glass.

  • PDF

Selection of Green Roof Initiative Zone for Improving Adaptation Capability against Urban Heat Island (도시열섬 적응능력 제고를 위한 옥상녹화 중점지역 선정 방안)

  • Park, Eun-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.135-146
    • /
    • 2014
  • The improvement of adaptation capability against heat island (ACHI) by greening buildings is considered as an important measure to cope with a climate change. This study aimed to select the most appropriate zones for green roof initiative in case study sites, Bucheon, Anyang, and Suwon Cities and to investigate the characteristics of buildings for greening to improve ACHI. Relative ACHI for each lot was estimated from 0 to -9, assuming that it decreases with the distance from green space and waterbody. Low adaptation capabilities were mostly shown in the old urban blocks with dense low-rise buildings and lack of green space. Three blocks with the lowest ACHIs were chosen as a green roof initiative zone in each city. They are largely residential areas including low-rise buildings such as single, multi-household houses, townhouses, 5 or lower story apartments and few are industrial areas crowded with small factory buildings. The areas of building roof available for greening are 8.8% within the selected zones in Bucheon City, 5.3% in Anyang City, and 4.9% in Suwon City. As it were, 25.2~41.7% of the roof top areas are available for greening in these zones. It means that roof top areas of $25,000{\sim}120,000m^2$ can be used for greening within the selected zones of $0.64{\sim}1.65km^2$ to improve ACHI. The approach and results of the study are significant to provide a logical basis and information on location, scale, effect, and target figure of greening as a measure to cope with climate change.

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

Expansion of Cool Roof Policy through Thermal Measurement of Eco-Friendly Ceramic Coating (친환경 세라믹 도료 열적측정을 통한 쿨루프 정책 확대방안)

  • Park, Min Yong;Lee, Dong Ho
    • Land and Housing Review
    • /
    • v.11 no.3
    • /
    • pp.75-82
    • /
    • 2020
  • The urban heat island phenomenon that accelerates global warming has always been controversial when summer heatwaves have occurred since it was first investigated and described by Luke Howard in the 1810s. In Korea, since 2014, government have been interested in Cool Roof and painted white coating on the rooftops of the aging and weak buildings, and the cool roof business has expanded nationwide. However, the roof occupies 20-25% of the entire city surface, much less than 37-45% of the pavement area consisting of roads, parking lots and sidewalks, there is a need to expand the policy of Cool Pavement as a way to reduce the urban heat island phenomenon. Domestic cities are high-rise buildings centered on apartments, and the area occupied by outer walls is larger than that of rooftops compared to foreign low-rise buildings. Therefore, as a way to reduce the urban heat island phenomenon, there is a need for a policy to expand the Cool Roof in buildings and use Cool Wall in parallel. Therefore, this study aims to present the expansion of Cool Wall in buildings and Cool Pavement in urban areas, expanding the installation range of Cool Roof, by comparing and reviewing the thermal characteristics of eco-friendly ceramic coating with excellent thermal proof performance and coatings used for roof waterproofing.

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.