• Title/Summary/Keyword: low pressure plasma

Search Result 478, Processing Time 0.031 seconds

Microplasma-Jet Device for Bio-medical Application (바이오-메디컬 응용을 위한 마이크로 플라즈마 분사 소자)

  • Kim, Kang-Il;Hong, Yong-Cheol;Kim, Guen-Young;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2474-2479
    • /
    • 2009
  • This paper presents an atmospheric microplasma-jet device for bio~medical application. The microplasma-jet device consists of four components; a thin Ni anode, porous alumina insulator, a stainless steel cathode and an aluminum case. The anode has 8 holes, and hole diameter and depth are $200 {\mu}m$ and $60 {\mu}m$, respectively. The discharge test was performed in atmospheric pressure using nitrogen gas and AC voltage at the optimum gas flow rate of 4 Vmin. The plasma-jet is ejected stably for the input voltage ranging from 5.5 to $9.5 kV_{p-p}$. The plasma becomes dense as the input voltage increases, which was verified by the hydrophilicity change of PMMA surface treated by the plasma. The temperature increasement of the aluminum film exposed to plasma-jet illustrates that the micro plasma-jet device is feasible for bio-medical application.

The improvement of cut-off probe for measuring plasma density at hard conditions

  • Kim, Dae-Ung;Yu, Sin-Jae;Kim, Jeong-Hyeong;Seong, Dae-Jin;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.202-202
    • /
    • 2011
  • Diagnostics of plasma density is a key factor for monitoring plasma processing. Various probes are invented to measure plasma density and cut-off probe is a one of the most promising diagnostics tool for measuring plasma density. However, at the low density or high pressure the cut-off probe cannot clearly resolve the cut-off peak. Several reasons make this problem: Cut-off likes peaks caused by cavity resonances and weaken transmission spectrum signal at high pressure. Recently, You et al., have researched mechanism of cut-off probe and we improve the cut-off reliability and sensitivity base on that research. Modified cut-off antenna is adapted and bias cut-off probe method is tried. These experiment results have good agreement with the previous study and show good measurement characteristics.

  • PDF

The baking analysis for vacuum vessel and plasma facing components of the KSTAR tokamak (KSTAR 토카막 진공용기 및 플라즈마 대향 부품의 탈기체 처리를 위한 가열 해석)

  • Lee, K.H.;Im, K.H.;Cho, S.;Kim, J.B.;Woo, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.247-254
    • /
    • 2000
  • The base pressure of vacuum vessel of the KSTAR (Korea Superconducting Tokamak Advanced Research) Tokamak is to be a ultra high vacuum, $10^{-6}{\sim}10^{-7}Pa$, to produce clean plasma with low impurity containments. For this purpose, the KSTAR vacuum vessel and plasma facing components need to be baked up to at least $250^{\circ}C,\;350^{\circ}C$ respectively, within 24 hours by hot nitrogen gas from a separate baking/cooling line system to remove impurities from the plasma-material interaction surfaces before plasma operation. Here by applying the implicit numerical method to the heat balance equations of the system, overall temperature distributions of the KSTAR vacuum vessel and plasma facing components are obtained during the whole baking process. The model for 2-dimensional baking analysis are segmented into 9 imaginary sectors corresponding to each plasma facing component and has up-down symmetry. Under the resulting combined loads including dead weight, baking gas pressure, vacuum pressure and thermal loads, thermal stresses in the vacuum vessel during bakeout are calculated by using the ANSYS code. It is found that the vacuum vessel and its supports are structurally rigid based on the thermal stress analyses.

  • PDF

A Study on the Low-Temperature Plasma$(O_2)$ Etching of Poly (ethylene terephthalate) Fabrics (I) -Effects of Weight Loss and Bathochromicity- (PET 직물에 대한 저온 plasma$(O_2)$ Ethching에 관한 연구(I))

  • Cho, Hwan;Jeong, Hee-Cheon;Cho, In-Sul;Huh, Man-Woo;Chang, Du-Sang
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.8-13
    • /
    • 1990
  • In order to study the modification of wettability, tactility, and bathochromicity of the poly (ethylene Terephthalate) (PET) fabrics, low-temperature plasma$(O_2)$ has been irradiated on the PET fabrics in various conditions. The results obtained from this study were as follows; 1) The weight loss rate of plasma-treated PET fabrics is proportional to irradiation time and internal gas temperature of treating chamber. Also, the effect of weight loss is remarkable at gas pressure ranging from 3 torr to 5 torr. 2) The bathochromic effect of PET fabrics treated with low-temperature plasma$(O_2)$ was improved.

  • PDF

Growth and Electrical Characteristics of Ultrathin $SiO_2$ Film Formed in an Electron Cyclotron Resonance Oxygen Plasma (ECR 산소 플라즈마에 의한 $SiO_2$ 박막의 성장 거동 및 전기적 특성)

  • 안성덕;이원종
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.371-377
    • /
    • 1995
  • Silicon oxide films were grown on single-crystal silicon substrates at low temperatures (25~205$^{\circ}C$) in a low pressure electron cyclotron resonance (ECR) oxygen plasma. The growth rate of the silicon oxide film increased as the temperature increased or the pressure decreased. Also, the thickness of the silicon oxide film increased at negative bias voltage, but not changed at positive bias voltage. The growth law of the silicon oxide film was approximated to the parabolic form. Capacitance-voltage (C-V) and current density-electric field (J-E) characteristics were studied using Al/SiO2/p-Si MOS structures. For a 10.2 nm thick silicon oxide film, the leakage current density at the electric field of 1 MVcm-1 was less than 1.0$\times$10-8Acm-2 and the breakdown field was higher than 10 MVcm-1. The flat band voltage of Al/SiO2/p-Si MOS capacitor was varied in the range of -2~-3 V and the effective dielectric constant was 3.85. These results indicate that high quality oxide films with properties that are similar to those of thermal oxide film can be fastly grown at low temperature using the ECR oxygen plasma.

  • PDF

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

The Characteristics of Compound Layers Formed during Plasma Nitrocarburising in Pure Iron (플라즈마 침질탄화처리된 순철의 화합물층 특성)

  • Cho, H.S.;Lee, S.Y.;Bell, T.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.3
    • /
    • pp.143-150
    • /
    • 2000
  • Ferritic plasma nitrocarburising was performed on pure iron using a modified DC plasma unit. This investigation was carried out with various gas compositions which consisted of nitrogen, hydrogen and carbon monoxide gases, and various gas pressures for 3 hours at $570^{\circ}C$. After treatment, the different cooling rates(slow cooling and fast cooling) were used to investigate its effect on the structure of the compound layer. The ${\varepsilon}$ phase occupied the outer part of the compound layer and ${\gamma}^{\prime}$ phase existed between the ${\varepsilon}$ phase and the diffusion zone. The gas composition of the atmosphere influenced the constitution of the compound layer produced, i.e. high nitrogen contents were essential for the production of ${\varepsilon}$ phase compound layer. It was found that with increasing carbon content in the gas mixture the compound layer thickness increased up to 10%. In the gas pressure around 3 mbar, the compound layer characteristics were slightly effected by gas pressure. However, in the low gas pressure and high gas pressure, the compound layer characteristics were significantly changed. The constitution of the compound layer was altered by varying the cooling rate. A large amount of ${\gamma}^{\prime}$ phase was transformed from the ${\varepsilon}$ phase during slow cooling.

  • PDF

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Plasma-Surface-Treatment of Nylon 6 Fiber for the Improvement of Water-Repellency by Low Pressure RF Plasma Discharge Processing (나일론 6 섬유의 발수성 향상을 위한 RF 플라스마 표면처리)

  • Ji, Young-Yeon;Jeong, Tak;Kim, Sang-Sik
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • It has been reported that the surface properties of the plasma treated material were changed while maintaining its bulk properties. In this study, surface modification of nylon fiber by plasma treatment was tried to attain high water-repellency Nylon fiber was treated with RF plasma under a vacuum system using various parameters such as gas specious, processing time and processing power. Morphological changes by low pressure plasma treatment were observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, the mechanical and inherent properties were analyzed by tensile strength, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The high water-repellency property of nylon fiber was evaluated by a water-drop standard test under various conditions in terms of aging effect. The results showed that the water-repellency of plasma-surface-treated nylon fiber was greatly improved compared to untreated nylon fiber.

Enviromental Application of Plasma Technology

  • Lee, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.119.1-119.1
    • /
    • 2014
  • Toxic waste disposal: Many people think that when toxic waste is dumped into the ocean or into the air, it disappears. This belief is incorrect. Rather than disappearing, it accumulates over time and slowly destroys the environment. Ultimately, it leads to the destruction of human race. Plasma is environmentally friendly: Plasma is environmentally friendly because it is created and disappears. When plasma is formed on the earth, you need certain conditions such as accelerating electrons by an electrical discharge or a particle accelerator. When this is gone, plasma completely disappears, leaving no impact on the environment. Plasmas produce radicals: Even if plasma density is low at atmospheric pressure, many radicals (excited states of molecules) are created. These radicals are chemically very aggressive. So instead of using harmful chemicals, plasma can be utilized for less of an impact on the environment. Plasma can reach very high temperatures: Plasma is also useful because when you control the density, you can easily reach high temperatures up to $5000{\sim}6000^{\circ}C$ at atmosphere pressure. Because of this heat and the chemical aggressiveness of the plasma, there are many green applications for plasma technology. Pulsed power technology: Pulsed electric field for extraction, drying and killing bacteria. Treatment of biological tissue by pulsed electric fields: Extraction of substances from cells: Sterilisation, Medical applications, Growth stimulation, Food preparation. Each application has its specialities, especially with respect to pulse shape and electric field strength.

  • PDF