• Title/Summary/Keyword: low pathogenic avian influenza

Search Result 28, Processing Time 0.019 seconds

PAIVS: prediction of avian influenza virus subtype

  • Park, Hyeon-Chun;Shin, Juyoun;Cho, Sung-Min;Kang, Shinseok;Chung, Yeun-Jun;Jung, Seung-Hyun
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.5.1-5.5
    • /
    • 2020
  • Highly pathogenic avian influenza (HPAI) viruses have caused severe respiratory disease and death in poultry and human beings. Although most of the avian influenza viruses (AIVs) are of low pathogenicity and cause mild infections in birds, some subtypes including hemagglutinin H5 and H7 subtype cause HPAI. Therefore, sensitive and accurate subtyping of AIV is important to prepare and prevent for the spread of HPAI. Next-generation sequencing (NGS) can analyze the full-length sequence information of entire AIV genome at once, so this technology is becoming a more common in detecting AIVs and predicting subtypes. However, an analysis pipeline of NGS-based AIV sequencing data, including AIV subtyping, has not yet been established. Here, in order to support the pre-processing of NGS data and its interpretation, we developed a user-friendly tool, named prediction of avian influenza virus subtype (PAIVS). PAIVS has multiple functions that support the pre-processing of NGS data, reference-guided AIV subtyping, de novo assembly, variant calling and identifying the closest full-length sequences by BLAST, and provide the graphical summary to the end users.

Evaluation on Immunogenicity and Safety of Avian Influenza Isolate(ADL0401) as a Candidate for the Killed Vaccine against tow-Pathogenic Avian Influenza (약병원성 조류인플루엔자 사독백신개발을 위한 후보주(ADL0401)의 면역 원성 및 안전성 평가)

  • Lee J. S.;Ha D. H.;Kim J. E.;Ha B. D.;Mo I. P.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.2
    • /
    • pp.113-123
    • /
    • 2005
  • Avian influenza (AI) virus (AIV) is distributed worldwide and it has been isolated from various species of wild and domestic birds. AI transfers with high speed and shows diverse pathogenicity syndroms. In Korea, several low Pathogenic AIV, H9N2, have been isolated from the commercial farms with severe decrease of egg production and mortality resulted in severe economic loss since 1996. Therefore, it has been requested to develop AI vaccines to prevent clinical signs and economic losses from the field infection of AIV. To develop a killed vaccine that efficiently prevents low pathogenic AIV (H9N2), evaluation on the pathogenicity and selection of an inactivator for H9N2 is taking place and is being tested safety and immunogenicity of vaccine produced. Based on the pathogenicity test and viral reisolation test, the ADL0401 isolate is the characteristic low pathogenic AIVs and has fairly similar biologic functions compared with MS96 which is the official low pathogenic AIV (H9N2) and one of the predominant AIV isolated from poultry farms in Korea. In antigenicity tests, the ADL0401 and MS96 virus have no significant antigenic difference. In inactivation tests, the ADL0401 isolates can be easily inactivated with $0.1\%$ Formalin at $37^{\circ}C$ within 1 hour with a little decrease of HA titer. The vaccine developed in the present report has no harmful effect on bird and forms good immune capability. Therefore, the isolates, ADL0401 can be used for a killed vaccine which can reduce the clinical signs and viral shedding in the birds infected with H9N2 low pathogenic AIVs.

Changes in Immunological Factors Induced by H9N2 Avian Influenza Challenge in Broilers (저병원성 조류인플루엔자 감염에 따른 육계의 면역인자 변화)

  • Kim, Deok-Hwan;Kim, Kyu-Jik;Noh, Jin-Yong;Lee, Sun-Hak;Song, Chang-Seon;Park, Hae Kyoung;Nahm, Sang-Soep
    • Korean Journal of Poultry Science
    • /
    • v.47 no.4
    • /
    • pp.229-235
    • /
    • 2020
  • Avian influenza virus infection, one of the most important diseases recognized in the poultry industry, is known to cause changes in cytokine and serum protein levels. However, the normal ranges and/or age-dependent changes in important cytokines and serum proteins associated with influenza infection have not been fully elucidated. In this study, the levels of cytokines (interleukin-1β, interleukin-6, and interferon-γ) and serum proteins (vitamin D binding protein and ovotransferrin) were determined in 1-week- to 4-week-old broilers at 1-week intervals after challenge with a low pathogenic influenza virus. The results showed that the physiological levels of cytokines and serum proteins varied with aging during the 4 weeks. The levels of interleukin-1β and interleukin-6 increased from 20% to 35% after influenza infection compared to those in the negative control group, indicating that these cytokines may be used to monitor disease progression.

Genetic Characterization of H7-subtype Avian Influenza Viruses (H7 아형 조류인플루엔자 바이러스의 유전자 특성)

  • Yeo, Jiin;Kwon, Hyuk-Moo;Sung, Haan-Woo
    • Korean Journal of Poultry Science
    • /
    • v.46 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Based on their virulence, the avian influenza viruses (AIVs) are classified into two pathotypes: low pathogenic avian influenza (LPAI) virus and highly pathogenic avian influenza (HPAI) virus. Among the 16 HA subtypes of AIV, only the H5 and H7 subtypes are classified as HPAI. Some AIVs, including H5 and H7 viruses, can infect humans directly. Six H7 subtype isolates from wild birds of the H7N7 (n=4) and H7N1 (n=2) subtypes were characterized in this study. Phylogenetic analysis showed that eight viral genes (HA, NA, PB2, PB1, PA, NP, M, and NS) of the H7 isolates clustered in the Eurasian lineage, the genetic diversity of which is indicated by its division into several sublineages. The Korean H7 isolates had two motifs, PEIPKGR and PELPKGR, at the HA cleavage site, which have been associated with LPAI viruses. Six H7 isolates encoded glutamine (Q) and glycine (G) at positions 226 (H3 numbering) and 228 of HA, suggesting avian-type receptor-binding specificity. None of the Korean H7 isolates had the amino acid substitutions E627K in PB2 and I368V in PB1, which are critical for efficient replication in human cells. The Korean H7 isolates showed no deletions in the NA stalk region and in NS. These results suggest that the Korean H7 isolates from wild birds are different from the H7N9 influenza viruses isolated in China in 2013, which are capable of infecting humans.

Establishment of optimal disinfection condition of weak acid hypochlorous solution for prevention of avian influenza and foot-and-mouth disease virus transmission (조류 인플루엔자와 구제역 바이러스 차단방역을 위한 미산성 차아염소산수의 소독 조건)

  • Kim, Jin-Yoon;Yun, Dong-Sik;Lee, Haw-Yong;Jeong, Woo-Seog;Park, Seung-Chun
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.101-104
    • /
    • 2019
  • This study examined the disinfection conditions (exposure time, 0-30 min; exposure temperature, $4^{\circ}C-65^{\circ}C$) of hypochlorous acid water (HOCl) in automobile disinfection equipment. The study tested poliovirus type 1 (PV1), low pathogenic avian influenza virus (AIV, H9N2), and foot and mouth disease virus (FMDV, O type). As a result, the PV1 and FMD viruses were inactivated easily (virus titer 4 log value) by HOCl (> 100 ppm) but the AIV required higher exposure temperatures (> $55^{\circ}C$). In conclusion, the exposure temperature and time are important factors in deactivating AIV and FMDV.

Avian influenza virus surveillance in wild bird in South Korea from 2019 to 2022

  • Eun-Jee, Na;Su-Beom, Chae;Jun-Soo, Park;Yoon-Ji, Kim;Young-Sik, Kim;Jae-Ku, Oem
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Avian influenza viruses (AIVs) cause contagious diseases and have the potential to infect not only birds but also mammals. Wild birds are the natural reservoir of AIVs and spread them worldwide while migrating. Here we collected active AIV surveillance data from wild bird habitats during the 2019 to 2022 winter seasons (from September to March of the following year) in South Korea. We isolated 97 AIVs from a total of 7,590 fecal samples and found the yearly prevalence of AIVs was 0.83, 1.48, and 1.27, respectively. The prevalence of AIVs were generally higher from September to November. These findings demonstrate that a high number of wild birds that carry AIVs migrate into South Korea during the autumn season. The highest virus numbers were isolated from the species Anas platyrhynchos (72%; n=70), followed by Anas poecilorhyncha (15.4%; n=15), suggesting that each is an important host for these pathogens. Twenty-five hemagglutinin-neuraminidase subtypes were isolated, and all AIVs except the H5N8 subtype were found to be low-pathogenic avian influenza viruses (LPAIVs). Active surveillance of AIVs in wild birds could benefit public health because it could help to estimate their risk for introduction into animals and humans. Moreover, considering that 132 cases of human AIV infections have been reported worldwide within the last 5 years, active surveillance of AIVs is necessary to avoid outbreaks.

SPF 닭에서 재조합 H9N3 조류 인플루엔자 백신의 효능과 안전성 평가

  • Sin, Jeong-Hwa;Mo, In-Pil
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.90-91
    • /
    • 2006
  • To reduce the economic impact and control Low pathogenic avian influenza (LPAI), vaccination with inactivated vaccine has been considered in this country. We tried to develop inactivated vaccine with reassorted H9N3 AI virus which has different type of neuraminidase compare to those of field AI virus. Before reassorted vaccine was produced, we confirm the virus as master seed by limiting dilution, RT-PCR and sequencing method. Also, we evaluate the biological characteristics of the virus to find out the possibility of prevention against field infection of AI virus. Finally, we evaluate the safety and efficacy of the vaccine made of reassorted AI virus in the specific pathogen free (SPF) chickens. After limiting dilution, we choose RV7CE4 as a vaccine candidate and compare the gene sequence of this vaccine strain to those of AI05GA which is parents strain. Compared to amino acid sequences of specific gene of AI05GA and RV7CE4, exhibited a high degree of amino acid sequence homology. In the safety and efficacy test, there were no specific clinical signs or mortality. Reassorted H9N3 viruses were reisolated in cloaca swab on 5 days post inoculation. In the vaccine study, once or twice vaccination was performed and challenged with H9N2 field virus (01310). Vaccine has no adverse effect on birds and formed good immune capability which reduce viral shedding in the birds infected with 01310. Based on the above result, we developed reassorted H9N3 vaccine which will efficiently prevent the low pathogenic AIV (H9N2) infection in the poultry farms.

  • PDF

Serological Survey of Major Avian Viral Diseases Related with Egg Production in Commercial Chicken Flocks in Korea

  • Jang, Hae-Sun;Lee, Hae-Rim;Koo, Bon-Sang;Jeon, Eun-Ok;Han, Moo-Sung;Min, Kyung-Cheol;Lee, Seung-Baek;Bae, Yeonji;Cho, Sun-Hyung;Mo, Jong-Suk;Kim, Jong-Nyeo;Mo, In-Pil
    • Korean Journal of Poultry Science
    • /
    • v.41 no.3
    • /
    • pp.173-179
    • /
    • 2014
  • While use of mass rearing systems improved poultry production, chances of exposing to contagious diseases have been increased, making flocks more vulnerable to diseases. Diseases of interest which affects egg production adversely include Low pathogenic avian influenza (LPAI), Infectious bronchitis (IB), Avian meta-pneumoviral infection (aMPV) and Egg drop syndrome'76 (EDS'76). This report collected and analyzed 5,385 serum samples, which were collected from 1,330 different chicken flock, provided by Chungbuk National University, Avian Disease Laboratory at 2009. Serums were analyzed based on rearing stages; 0~1.3weeks (wks) (maternal antibody period), >1.3~3 wks (starting period), >3~10 wks (growing period), >10~22 wks (developing period), >22~40 wks (peak laying period), >40~60 wks (late laying period) and over 60 wks (post-molting period). Results showed the 99.7% of the tested flocks were immunized against ND and73.8%, 97.1%, 78,2% and 78% of the flocks were immunized against other 4 agents (LPAI, IB, EDS'76, aMPV). Maternal antibody was transferred to enough quantity for NDV. Generally, antibody titers which were developed at 22 weeks were stabilized permanently for life. In case of IB and aMPV, infection titer emerged as early as 10 weeks and the titer was increased from 99.4% to 100% for life. EDS76 showed increase in titers, reflecting decreased frequency of vaccination programs. Overall, this study displayed general trends of major viral disease in layers, but considering the trend of development of preventive measures and evolution of pathogens, conducting serological surveys on a regular basis is important.

Serologic monitoring of animal welfare-oriented laying-hen farms in South Korea

  • So, Hyunhee;Jeong, Seolryung;Mo, Jongsuk;Min, Kyungchul;Kim, Jongnyeo;Mo, In-Pil
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.193-199
    • /
    • 2018
  • As animal welfare issue becomes important, the European Union bans conventional cages for laying hens from 2012. So the alternative housing systems like floor pens, aviaries or free range systems have been suggested. From 2011 to 2014, we monitored 20 welfare-oriented laying hen farms in South Korea to figure out serological status of major viral diseases. During this period, total 3,219 blood samples were collected from the randomly selected chickens to test and evaluate the hemagglutination inhibition titers for low pathogenic avian influenza, Newcastle disease and egg drop syndrome '76. A total of 2,926 blood samples were tested through enzyme linked immunosorbent assay (ELISA) to assess the serological status of infectious bronchitis (IB). The distribution of ELISA titers for IB was various from almost 0 to 20,000 through the all weeks of age. Also, the antibody coefficient of variation for most of the diseases in this study was higher than those of typical cage layers. As this study was the first surveillance for major avian viral diseases of the animal welfare-oriented farms in South Korea, the results obtained from this study will help to determine what information and resources are needed to maintain better biosecurity and to improve the health and welfare of laying hen flocks.

Pathology and virus distribution in the lymphoid tissues of chicks co-infection with H9N2 Avian influenza and Newcastle disease virus (저병원성 조류인플루엔자와 뉴캐슬 바이러스의 복합감염에 따른 닭 림프조직 병변의 특성 및 바이러스 검출)

  • Lee, Sung-Min;Cho, Eun-Sang;Choi, Hwan-Won;Choi, Bo-Hyun;Son, Hwa-Young
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.3
    • /
    • pp.135-144
    • /
    • 2019
  • Low pathogenic avian influenza (LPAI; H9N2) and Newcastle disease (ND) are economically important poultry diseases in Korea. In this study, we investigated pathological features and virus distribution in the lymphoid tissues of chicks experimentally infected with H9N2 and/or ND virus. Six-weeks-old SPF chickens were divided into 4 groups, Control (C), H9N2 (E1), NDV (E2), and H9N2+NDV (E3). E1 group was challenged with 0.1 ml A/Kr/Ck/01310/01 (H9N2) $10^{5.6}$ $EID_{50}$ intranasally, E2 group was challenged with 0.5 ml KJW (NDV) $10^{5.0}{\sim}10^{6.0}$ $ELD_{50}$ intramuscularly, and E3 group was challenged with H9N2, followed 7 days later by NDV. In histopathological examination, E1 group showed depletion and necrosis in bursa of Fabricius, thymus, cecal tonsil, and spleen, whereas E2 and E3 groups were noted severe lymphocyte depletion and necrosis with destruction of lymphoid organs structures. In TUNEL assay, apoptotic bodies were detected in lymphoid organs of all experimental groups, which was most severe in E3 group. H9N2 and ND viruses were predominantly detected in cecal tonsil of E1, E2, and E3 groups by PCR and immunohistochemistry (ICH). In conclusion, co-infection of H9N2 with NDV caused severe pathologic lesions and apoptosis in lymphoid tissues compared to single infections.