• Title/Summary/Keyword: low organic compounds

Search Result 420, Processing Time 0.032 seconds

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

Types of Hazardous Factors and Time-trend of Exposure Levels from the Working Environment at a Shock Absorber Manufacturing Facility (자동차 쇼크업소바 제조사업장의 작업자 노출 유해인자의 종류 및 노출수준의 경시적 변화)

  • Na, Gyu-Chae;Moon, Chan-Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.4
    • /
    • pp.393-405
    • /
    • 2018
  • Objective: This study examines the types of hazardous factors in the working environment and the time-trend for their exposure levels over 10 years (2007 to 2016). Study Design and Method: The types of hazardous factors and exposure levels were drawn from the 19 measurement reports on the working environment over 10 years at a shock absorber manufacturing facility. Risk assessment of the types of factors and time-trend of exposure levels were evaluated using the factors and exposure levels. Results: A total of 34 hazardous factors were evaluated. The types were noise, 15 organic compounds, seven kinds of acid sand alkalis, eight kinds of heavy metals, and three other compounds. Special management materials used were nickel, hexavalent chrome, and sulfuric acid. Human carcinogens (1A) used were trichloroethylene, nickel, and sulfuric acid. There were six types of substances belonging to the IARC's 2B (body carcinogens) classification or higher, including, methyl isobutyl ketone, ethyl benzene, and trichloroethylene. No detection was found for 627 out of the 2065 total measurements in 19 exposure survey reports, representing 30.4%. Organic solvents, acid and alkali products, and heavy metals showed continuous low exposure concentrations. Noise, welding fumes, and the evaluation of mixed solvents show a gradual decrease in geometric mean and maximum over the time-trend of 10 years. Conclusions: In the case of a shock absorber manufacturing facility, the hazardous factors of noise and the evaluation of mixed solvents still indicate high concentrations exceeding the exposure limits and necessitate reduction studies. These two factors and welding fumes showed a continuous decrease in their ten-year tendency. Organic compounds, acids/alkalis, and heavy metals were managed smoothly in a work environment of continuous low concentrations.

Extraction Methods of Organic Components from Rubber Composites and Analysis of the Extract Using Gas Chromatography/Mass Spectrometry

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.188-200
    • /
    • 2019
  • Rubber articles contain various organic additives such as antidegradants, curing agents, and processing aids. It is important to extract and analyze these organic additives. In this paper, various extraction methods of organic additives present in rubber composites were introduced (solvent extraction, Soxhlet extraction, headspace extraction, and solid-phase microextraction), and the extracts were characterized using gas chromatography/mass spectrometry (GC/MS). Solvent and Soxhlet extractions are easy-to-perform and commonly used methods. Efficiency of solvent extraction varies according to the type of solvent used and the extraction conditions. Soxhlet extraction requires a large volume of solvent. Headspace sampling is suitable for extracting volatile organic compounds, while solid-phase extraction is suitable for extracting specific chemicals. GC/MS is generally used for characterizing the extract of a rubber composite because most components of the extract are volatile and have low molecular weights. Identification methods of chemical structures of the components separated by GC column were also introduced.

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Seasonal Changes of Total Phenolic Compounds and Antioxidant Activity in Leaves of Organic Apricot, Filbert, Mulberry, Persimmon and Pomegranate Trees (유기농 살구, 개암, 오디, 감 및 석류나무 잎의 생육단계별 총 페놀화합물과 항산화 활성변화)

  • Kim, Wol-Soo;Seo, Min-Soo;Jo, Jung-An
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.999-1010
    • /
    • 2015
  • Total phenolic compounds and antioxidant activity were investigated in leaves of organic apricot, filbert, mulberry, persimmon, and pomegranate trees during growing season. Total phenolic compounds and antioxidant activity in leaves of organic apricot and filbert trees were gradually increased from May to June, attained peak in July, thereafter decreased to minimum level in October. In leaves of organic mulberry tree total phenolic compounds and antioxidant activity were simultaneously increased from May to June and sharply decrease to very low level. The leaves of organic persimmon trees showed very high level of total phenolic compounds and antioxidant activity from May to June, thereafter gradually decrease to October. The leaves of organic pomegranate trees showed extraordinarily highest level of total phenolic compounds among five fruit trees investigated in the study during growing stages, as well as maintained higher than 91 percent of antioxidant activity from May to October. Correlation coefficients between total phenolic compound and antioxidant activity of the leaves of five organic trees were the highest in mulberry leaves, and then persimmon, filbert, apricot, and pomegranate, respectively. However, correlation coefficients between total phenolic compound and antioxidant activity of the leaves of organic pomegranate were very low level, and not significant in their relationship.

DFT Calculations on the Wavelength Dispersion of Absorbance and Refractive Indices for Molecular Design of Photonic Polymers

  • Ando, Shinji
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.230-230
    • /
    • 2006
  • Density functional theory (DFT) calculations using the B3LYP hybrid functional and the 6-311++G(d,p) basis set have been performed to predict the wavelength dispersion of optical absorbance and refractive indices for organic compounds and polymers in the range between the vacuum UV (${\sim}157\;nm$) and near-IR (${\sim}850\;nm$). The DFT calculations can reproduce the experimental dispersions of absorbance and refractive indices with high accuracy and low costs. The calculated dispersions demonstrate that the judicious introductions of $-F\;and\;-CF_{3}$ into alicyclic and heterocyclic compounds are effective in reducing the absorption at shorter wavelengths. In addition, the calculated Abbe numbers that represent the refractive index dispersion in the visble region are linearly proportional to the calculated refractive indices at 589 nm.

  • PDF

Column Removal of Trichloroethylene and Dichloromethane using Low Cost Activated Carbon

  • Radhika, M.;Lee, Young-Seak;Palanivelu, K.
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.13-21
    • /
    • 2010
  • Coconut shell activated carbon (CSAC) was investigated for its ability in the removal of two neutral chlorinated organic compounds, namely trichloroethylene (TCE) and dichloromethane (DCM) from aqueous solution using a packed bed column. The efficiency of the prepared activated carbon was also compared with a commercial activated carbon (CAC). The important design parameters such as flow rate and bed height were studied. In all the cases the lowest flow rate (5 mL/min) and the highest bed height (25 cm) resulted in maximum uptake and per cent removal. The experimental data were analysed using bed depth service time model (BDST) and Thomas model. The regeneration experiments including about five adsorption-desorption cycles were conducted. The suitable elutant selected from batch regeneration experiments (25% isopropyl alcohol) was used to desorb the loaded activated carbon in each cycle.

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF

The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives

  • Vijayakumar Natesan;Sung-Jin Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.16-26
    • /
    • 2023
  • Diabetes is an untreatable metabolic disorder characterized by alteration in blood sugar homeostasis, with submucosal insulin therapy being the primary treatment option. This route of drug administration is attributed to low patient comfort due to the risk of pain, distress, and local inflammation/infections. Nanoparticles have indeed been suggested as insulin carriers to allow the drug to be administered via less invasive routes other than injection, such as orally or nasally. The organic-based nanoparticles can be derived from various organic materials (for instance, polysaccharides, lipids, and so on) and thus are prevalently used to enhance the physical and chemical consistency of loaded bioactive compounds (drug) and thus their bioavailability. This review presents various forms of organic nanoparticles (for example, chitosan, dextron, gums, nanoemulsion, alginate, and so on) for enhanced hypoglycemic drug delivery relative to traditional therapies.

A Study on the Performance Prediction of Low Temperature Thermal Desorption System (저온 수처리장치 열교환기의 열전달 특성에 관한 연구)

  • Lee, C.T.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.76-81
    • /
    • 2009
  • Thermal desorption systems are designed to remove organic compounds from solid matrices such as soils, sludges and filter cakes without thermally destroying them. It is a separation technology, not a destruction technology. Since it is a thermal process, there is a common belief that temperature is the only significant parameter to be monitored. While it is true that better removal efficiencies are usually achieved at higher temperatures, other factors must be considered. Since the process is governed by mass transfer, heating time and the amount of mixing are also key parameters in optimizing removal efficiency. Thermal desorption have been successfully used for just about every organic contaminant found to date. It has also been used to remove mercury. In the present study, the numerical simulation has been performed to investigate the characteristics of heat transfer of LTTD(low temperature thermal desorption). The commercial software, AMESIM was applied for analyzing the heat transfer process in the LTTD.

  • PDF