• Title/Summary/Keyword: low metallic pads

Search Result 5, Processing Time 0.019 seconds

Study of Anti-Fading Phenomena during Automotive Braking (자동차 제동시 나타나는 Anti-Fading현상에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • Two different friction materials (organic and low-metallic pads) for automotive brakes were studied to investigate the anti-fading phenomena during stop. The anti-fading phenomena were pronounced more in the case of using low metallic friction materials than organic friction materials. The main cause of the anti-fading phenomena was the high dependence of friction coefficient on a sliding speed. The anti-fading was prominent when the initial brake temperature was high in the case of low-metallic friction materials due to the strong stick-slip event at high temperature. On the other hand, the anti-fading was not severe in organic friction materials and the effect was reduced at high braking temperature due to the thermal decomposition of organic friction materials. The strong stickslip phenomena of low metallic friction materials at high temperature induced high torque oscillations during drag test. During this experiment two different braking control modes (pressure controlled and torque controlled modes) were compared. The type of the control mode used for brake test significantly affected the friction characteristics.

Effects of Composition of Metallic Friction Materials on Tribological Characteristics on Sintered Metallic Brake Pads and Low-Alloy Heat-Resistance Steel for Trains (철도차량용 금속계 소결마찰재의 조성에 따른 트라이볼로지 특성)

  • Yang, Yong Joon;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2014
  • Sintered metallic brake pads and low alloy heat resistance steel disks are applied to mechanical brake systems in high energy moving machines that are associated with recently developed 200km/h trains. This has led to the speed-up of conventional urban rapid transit. In this study, we use a lab-scale dynamometer to investigate the effects of the composition of friction materials on the tribological characteristics of sintered metallic brake pads and low alloy heat resistance steel under dry sliding conditions. We conduct test under a continuous pressure of 5.5 MPa at various speeds. To determine the optimal composition of friction materials for 200 km/h train, we test and the evaluate frictional characteristics such as friction coefficients, friction stability, wear rate, and the temperature of friction material, which depend on the relative composition of the Cu-Sn and Fe components. The results clearly demonstrate that the average friction coefficient is lower for all speed conditions, when a large quantity of iron power is added. The specimen of 25 wt% iron powder that was added decreased the wear of the friction materials and the roughness of the disc surface. However when 35 wt% iron powder was added, the disc roughness and the wear rate of friction materials increased By increasing the amount of iron powder, the surface roughness, and temperature of the friction materials increased, so the average friction coefficients decreased. An oxidation layer of $Fe_2O_3$ was formed on both friction surfaces.

A Study on the Friction Characteristics of Automotive Brake Pads Reinforced with Carbon Fibers (탄소 섬유를 강화재로 사용한 자동차용 마찰재의 마찰특성에 관한 연구)

  • Jung, K. Y.;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.330-336
    • /
    • 1998
  • The friction and wear characteristics of automotive friction materials reinforced with carbon fibers were studied using a direct drive brake dynamometer. Two types of model friction materials, a low-metallic and an NAO type, were prepared and each of the materials was modified by substituting 5 vol% of carbon fibers with other reinforcing fiber used in the model formulations. Drag tests were carried out to investigate the friction properties of these materials at various braking conditions. Results showed that the modified friction materials were improved in the friction stability and the wear resistance.

  • PDF

Flip Chip Assembly Using Anisotropic Conductive Adhesives with Enhanced Thermal Conductivity

  • Yim, Myung-Jin;Kim, Hyoung-Joon;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.9-16
    • /
    • 2005
  • This paper presents the development of new anisotropic conductive adhesives with enhanced thermal conductivity for the wide use of adhesive flip chip technology with improved reliability under high current density condition. The continuing downscaling of structural profiles and increase in inter-connection density in flip chip packaging using ACAs has given rise to reliability problem under high current density. In detail, as the bump size is reduced, the current density through bump is also increased. This increased current density also causes new failure mechanism such as interface degradation due to inter-metallic compound formation and adhesive swelling due to high current stressing, especially in high current density interconnection, in which high junction temperature enhances such failure mechanism. Therefore, it is necessary for the ACA to become thermal transfer medium to improve the lifetime of ACA flip chip joint under high current stressing condition. We developed thermally conductive ACA of 0.63 W/m$\cdot$K thermal conductivity using the formulation incorporating $5 {\mu}m$ Ni and $0.2{\mu}m$ SiC-filled epoxy-bated binder system to achieve acceptable viscosity, curing property, and other thermo-mechanical properties such as low CTE and high modulus. The current carrying capability of ACA flip chip joints was improved up to 6.7 A by use of thermally conductive ACA compared to conventional ACA. Electrical reliability of thermally conductive ACA flip chip joint under current stressing condition was also improved showing stable electrical conductivity of flip chip joints. The high current carrying capability and improved electrical reliability of thermally conductive ACA flip chip joint under current stressing test is mainly due to the effective heat dissipation by thermally conductive adhesive around Au stud bumps/ACA/PCB pads structure.

  • PDF

Analysis of charge and magnetic characteristics of brake wear particles (브레이크 마모입자의 하전 및 자성 특성 분석)

  • Chaeyeon Jo;Dongho Shin;Gunhee Lee;Sang-Hee Woo;Seokhwan Lee;Bangwoo Han;Jungho Hwang
    • Particle and aerosol research
    • /
    • v.19 no.2
    • /
    • pp.31-42
    • /
    • 2023
  • The charge and magnetic characteristics of LM (Low-metallic) and NAO (Non-asbestos-organic) brake wear particles were analyzed. The ratio of charged particles from total particles is about 86% of the LM pad and about 92% of the NAO pad. Number of charge per particle from the NAO pad is also higher than that of the LM pad. The ratio of magnetic particles from total particles increases with the particle size. The ratio of magnetic particles from the LM pad is about 15% for the particles with the size of 1 ㎛, and about 74% for ones with 5 ㎛. The ratio from the NAO pad is about 5% for the particles with the size from 0.5 ㎛ to 2 ㎛, and about 80% for the particles with 5 ㎛. Through the analysis of the components of the two pads with SEM-EDS (Scanning Electron Microscopy - Energy Dispersive X-ray Spectroscopy), it was found that the LM pad was occupied with more iron fraction than the NAO pad and that PM2.5-10 was occupied with more iron fraction than PM2.5. The particles smaller than 10 ㎛ (i.e. PM10) from the LM pad contained about 83% of charged particles, about 43% of magnetic particles, and about 93% of charged or magnetic particles. PM10 from the NAO pad contained about 88% of charged particles, about 15% of magnetic particles, and about 89% of charged or magnetic particles.