• 제목/요약/키워드: low mass-damping

검색결과 62건 처리시간 0.028초

Parametric study of pendulum type dynamic vibration absorber for controlling vibration of a two DOF structure

  • Bur, Mulyadi;Son, Lovely;Rusli, Meifal;Okuma, Masaaki
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.51-58
    • /
    • 2017
  • Passive dynamic vibration absorbers (DVAs) are often used to suppress the excessive vibration of a large structure due to their simple construction and low maintenance cost compared to other vibration control techniques. A new type of passive DVA consists of two pendulums connected with spring and dashpot element is investigated. This research evaluated the performance of the DVA in reducing the vibration response of a two degree of freedom shear structure. A model for the two DOF vibration system with the absorber is developed. The nominal absorber parameters are calculated using a Genetic Algorithm(GA) procedure. A parametric study is performed to evaluate the effect of each absorber parameter on performance. The simulation results show that the optimum condition for the absorber frequencies and damping ratios is mainly affected by pendulum length, mass, and the damping coefficient of the pendulum's hinge joint. An experimental model validates the theoretical results. The simulation and experimental results show that the proposed technique is able be used as an effective alternative solution for reducing the vibration response of a multi degree of freedom vibration system.

Tuned Mass Damper(TMD)를 이용한 보도교의 진동제어에 대한 연구 (Study on the Vibration Control of Footbridge by Using Tuned Mass Damper(TMD))

  • 권영록;최광규
    • 한국지진공학회논문집
    • /
    • 제7권6호
    • /
    • pp.9-15
    • /
    • 2003
  • 본 연구는 기존 보도교의 TMD를 이용한 진동제어에 대해 기술한 논문이다. 본 연구의 대상인 보도교는 단순 강 박스형 교량이고 주 경간이 47.7m이다. 교량의 중량은 11.17kN/m이고, 매우 작은 감쇠율을 갖고 있으며, 1차 고유진동수가 1.84Hz이다. 이 진동수는 인간의 보행 진동수인 2Hz와 근접하고 있다. 따라서 보행자의 보행에 피해 불안정한 공진진동이 자주 발생하였다. 본 연구에서는 이와 같은 보행자로 인한 보행 진동을 억제하기 위하여 TMD를 이용한 진동대책에 대해 기술한 논문이고, 진동대책에서 경제성과 시공성을 고려하여 보도교의 난간에 설치하는 소형의 TMD에 대해 기술하고 있다. TMD 설치 이후의 현장실험과 수치해석으로부터 보도교의 구조감쇠가 TMD 설치 이전의 감쇠율보다 약 13배 증가되었고 공진 진동이 거의 억제되었음을 확인하였다.

Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests

  • Liu, Min;Li, Shouying;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • 제26권5호
    • /
    • pp.619-629
    • /
    • 2020
  • Solar towers, which often has a large aspect ratio and low fundamental natural frequency, were extremely prone to large amplitude of wind-induced vibrations, especially Vortex-Induced Vibration (VIV). A tiny Tuned Mass Damper (TMD) with conveniently adjustable eddy current damping was specially designed and manufactured for elastic wind tunnel tests of a solar tower. A series of numerical simulations by using the COMSOL software were conducted to determine three key parameters, including the thickness of the back iron plate and the conductive plate (Tb and Tc), the distance between the magnet and the conductive plate (Td). Based on the results of numerical simulations, a tiny TMD was manufactured and its structural parameters were experimentally identified. The optimized values of the tiny TMD can be conveniently realized. The tiny TMD was installed at the top of the elastic test model of a 243-meter-high solar tower, and a series of wind tunnel tests were carried out to examine the effectiveness of the TMD in suppressing wind-induced responses of the test model. The results showed that the wind-induced responses could be obviously reduced by the TMD, especially in the cross-wind direction. The cross-wind RMS and peak responses at the critical wind velocity can be reduced by about 86% and 75%, respectively. However, the maximum reduction of the responses at the design wind velocity is about 45%, obviously less than that at the critical wind velocity.

유체 봉입 마운트의 동적 특성화를 위한 집중질량 요소를 갖는 기계적 모형의 문제점 파악과 실험 방법 개선을 통한 수력학적 모형의 타당성 확인 (A Study on Shortcomings of Mechanical Model with Lumped Mass for Dynamic Characterization of Hydraulic Mounts and Confirmation of Hydraulic Model by Improvement of Experimentations)

  • 배만석;이준화;김광준
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.393-399
    • /
    • 2003
  • Hydraulic mounts show strong1y frequency-dependent stiffness and damping characteristics in low frequency range, which result from so called inertia track dynamics. A lumped mass has been incorporated in several mechanical models of the literature to take the inertia effect of the fluid in the track into consideration. Although complex s%illness by the mechanical model showed good agreements with the measured values, there exists a critical pitfall. In this paper, the shortcomings of mechanical models with lumped mass for hydraulic founts are clearly identified by illustrating actual measurements of the stiffness parameters for a hydraulic mount. It is conclusively discussed that the inertia effect of the fluid flow through the circular track is significant but latent. As an alternative to the mechanical model, a hydraulic model is claimed to be used for further dynamic analysis of engine/mount system or whole car system.

Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers

  • Lee, Minhyung;Lee, Sung-Yeoul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1628-1637
    • /
    • 2003
  • The vortex-induced vibrations of a circular cylinder at low Reynolds (Re) numbers are simulated by applying a method of the two-dimensional computational fluid dynamics coupled with the structural dynamics based on the multi-physics. The fluid solver is first tested on the case of a fixed cylinder at Re$\leq$160, and shows a good agreement with the previous high-resolution numerical results. The present study then reports on the detailed findings concerning the vibrations of an elastic cylinder with two degrees of translational freedom for a number of cases in which Re is fixed at 200, a reduced damping parameter Sg=0.01, 0.1, 1.0, 10.0 and the mass ratio M$\^$*/ = 1, 10.

마그네슘 주조성형기술의 개발동향 (Development Trend of Magnesium Casting Technology)

  • 김현식;예대희;강민철
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.243-248
    • /
    • 2011
  • Magnesium alloys have many advantages such as light-weight, high machinability, damping capacity, etc. So magnesium alloy parts have been used in transportation, mobile phone, military industries. Because of HCP atomic structure, Magnesium is very difficult in plastic deformation process, so most of magnesium products are fabricated by casting process. Magnesium alloys have low heat-capacity, high fluidity and low Fe solubility. For these reasons it is more suitable than aluminum in mass-production by casting. And various casting technologies have been developed. So casting technologies for magnesium developed recently is discussed in this paper.

Optimal placement and tuning of multiple tuned mass dampers for suppressing multi-mode structural response

  • Warnitchai, Pennung;Hoang, Nam
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.1-24
    • /
    • 2006
  • The optimal design of multiple tuned mass dampers (multiple TMD's) to suppress multi-mode structural response of beams and floor structures was investigated. A new method using a numerical optimizer, which can effectively handle a large number of design variables, was employed to search for both optimal placement and tuning of TMD's for these structures under wide-band loading. The first design problem considered was vibration control of a simple beam using 10 TMD's. The results confirmed that for structures with widelyspaced natural frequencies, multiple TMD's can be adequately designed by treating each structural vibration mode as an equivalent SDOF system. Next, the control of a beam structure with two closely-spaced natural frequencies was investigated. The results showed that the most effective multiple TMD's have their natural frequencies distributed over a range covering the two controlled structural frequencies and have low damping ratios. Moreover, a single TMD can also be made effective in controlling two modes with closely spaced frequencies by a newly identified control mechanism, but the effectiveness can be greatly impaired when the loading position changes. Finally, a realistic problem of a large floor structure with 5 closely spaced frequencies was presented. The acceleration responses at 5 positions on the floor excited by 3 wide-band forces were simultaneously suppressed using 10 TMD's. The obtained multiple TMD's were shown to be very effective and robust.

Active mass damper control for cable stayed bridge under construction: an experimental study

  • Chen, Hao;Sun, Zhi;Sun, Limin
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.141-156
    • /
    • 2011
  • A cable stayed bridge under construction has low structural damping and is not as stable as the completed bridge. Control countermeasures, such as the installation of energy dissipating devices, are thus required. In this study, the general procedure and key issues on adopting an active control device, the active mass damper (AMD), for vibration control of cable stayed bridges under construction were studied. Taking a typical cable stayed bridge as the prototype structure; a lab-scale test structure was designed and fabricated firstly. A baseline FEM model was then setup and updated according to the modal parameters measured from vibration test on the structure. A numerical study to simulate the bridge-AMD control system was conducted and an efficient LQG-based controller was designed. Based on that, an experimental implementation of AMD control of the transverse vibration of the bridge model was performed. The results from numerical simulation and experimental study verified that the AMD-based active control was feasible and efficient for reducing dynamic responses of a complex structural system. Moreover, the discussion made in this study clarified some critical problems which should be addressed for the practical implementation of AMD control on real cable-stayed bridges.

Research on vibration control of a transmission tower-line system using SMA-BTMD subjected to wind load

  • Tian, Li;Luo, Jingyu;Zhou, Mengyao;Bi, Wenzhe;Liu, Yuping
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.571-585
    • /
    • 2022
  • As a vital component of power grids, long-span transmission tower-line systems are vulnerable to wind load excitation due to their high flexibility and low structural damping. Therefore, it is essential to reduce wind-induced responses of tower-line coupling systems to ensure their safe and reliable operation. To this end, a shape memory alloy-bidirectional tuned mass damper (SMA-BTMD) is proposed in this study to reduce wind-induced vibrations of long-span transmission tower-line systems. A 1220 m Songhua River long-span transmission system is selected as the primary structure and modeled using ANSYS software. The vibration suppression performance of an optimized SMA-BTMD attached to the transmission tower is evaluated and compared with the effects of a conventional bidirectional tuned mass damper. Furthermore, the impacts of frequency ratios and SMA composition on the vibration reduction performance of the SMA-BTMD are evaluated. The results show that the SMA-BTMD provides superior vibration control of the long-span transmission tower-line system. In addition, changes in frequency ratios and SMA composition have a substantial impact on the vibration suppression effects of the SMA-BTMD. This research can provide a reference for the practical engineering application of the SMA-BTMD developed in this study.

Stress Analysis Using Finite Element Modeling of a Novel RF Microelectromechanical System Shunt Switch Designed on Quartz Substrate for Low-voltage Applications

  • Singh, Tejinder;Khaira, Navjot K.;Sengar, Jitendra S.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권5호
    • /
    • pp.225-230
    • /
    • 2013
  • This paper presents a novel shunt radio frequency microelectromechanical system switch on a quartz substrate with stiff ribs around the membrane. The buckling effects in the switch membrane and stiction problem are the primary concerns with RF MEMS switches. These effects can be reduced by the proposed design approach due to the stiffness of the ribs around the membrane. A lower mass of the beam and a reduction in the squeeze film damping is achieved due to the slots and holes in the membrane, which further aid in attaining high switching speeds. The proposed switch is optimized to operate in the k-band, which results in a high isolation of -40 dB and low insertion loss of -0.047 dB at 21 GHz, with a low actuation voltage of only 14.6 V needed for the operation the switch. The membrane does not bend with this membrane design approach. Finite element modeling is used to analyze the stress and pull-in voltage.