• Title/Summary/Keyword: low liquid limit silt

Search Result 2, Processing Time 0.016 seconds

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Characteristics of Shear Strength Parameters of Various Soils by Direct Shear Test (직접전단시험에 의한 다양한 시료의 전단강도 특성)

  • Park, Choonsik;Jeong, Jeonggeun
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.584-595
    • /
    • 2018
  • This study conducted direct shear test on about 290 sorts of materials such as sandy soil, clayey soil and gravely soil to present proper standard on shear strength of soil. Shear strength of soil in large scale tends to show that angle of internal friction increases as sand contents grow and it ranges $23.5^{\circ}{\sim}34.9^{\circ}C$ with cohesion of 2.0 kPa~15.7 kPa. Elastic modulus was visibly distinct by load, and which increased approximately 80% as vertical load grows. Angle of internal friction arranging $15.0^{\circ}{\sim}28.6^{\circ}$ on clayey soil decreased as clay contents rises and cohesion increase in regular scale. Elastic modulus tends to increase initial elastic modulus with almost same growing rate. While angle of internal friction on gravely soil indicates $29.9^{\circ}{\sim}36.7^{\circ}$ which hardly shows distinctive features. According to test in detail, cohesion of SW (well-graded sand), SP (poorly-graded sand), SC (clayey sand) and SM (silty sand) indicates value by 94%, 78% and 59% comparing to SC, SW and SP respectively. Angle of internal friction of ML (low-liquid limit silt) and CL (low-liquid limit clay) appears almost same features, and MH (high-liquid limit silt) despite of 88% value of ML. Cohesion among them varies with similar growing rate.