• Title/Summary/Keyword: low k passivation

Search Result 125, Processing Time 0.027 seconds

Process Temperature Dependence of Al2O3 Film Deposited by Thermal ALD as a Passivation Layer for c-Si Solar Cells

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2013
  • This paper presents a study of the process temperature dependence of $Al_2O_3$ film grown by thermal atomic layer deposition (ALD) as a passivation layer in the crystalline Si (c-Si) solar cells. The deposition rate of $Al_2O_3$ film maintained almost the same until $250^{\circ}C$, but decreased from $300^{\circ}C$. $Al_2O_3$ film deposited at $250^{\circ}C$ was found to have the highest negative fixed oxide charge density ($Q_f$) due to its O-rich condition and low hydroxyl group (-OH) density. After post-metallization annealing (PMA), $Al_2O_3$ film deposited at $250^{\circ}C$ had the lowest slow and fast interface trap density. Actually, $Al_2O_3$ film deposited at $250^{\circ}C$ showed the best passivation effects, that is, the highest excess carrier lifetime (${\tau}_{PCD}$) and lowest surface recombination velocity ($S_{eff}$) than other conditions. Therefore, $Al_2O_3$ film deposited at $250^{\circ}C$ exhibited excellent chemical and field-effect passivation properties for p-type c-Si solar cells.

Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells

  • Jeon, Min-Sung;Kamisako, Koichi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.75-79
    • /
    • 2009
  • An intrinsic silicon thin film passivation layer is deposited by the microwave remote-plasma enhanced chemical vapor deposition at temperature of $175^{\circ}C$ and various gas ratios for solar cell applications. The good quality amorphous silicon films were formed at silane $(SiH_4)$ gas flow rates above 15 seem. The highest effective carrier lifetime was obtained at the $SiH_4$, flow rate of 20 seem and the value was about 3 times higher compared with the bulk lifetime of 5.6 ${\mu}s$ at a fixed injection level of ${\Delta}n\;=\;5{\times}10^{14}\;cm^{-3}$. An annealing treatment was performed and the carrier life times were increased approximately 5 times compared with the bulk lifetime. The optimal annealing temperature and time were obtained at 250 $^{\circ}C$ and 60 sec respectively. This indicates that the combination of the deposition of an amorphous thin film at a low temperature and the annealing treatment contributes to the excellent surface and bulk passivation.

Rear Surface Passivation with Al2O3 Layer by Reactive Magnetron Sputtering for High-Efficiency Silicon Solar Cell

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Jeon, Jun-Hong;Choi, Jin-Young;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.211-211
    • /
    • 2012
  • The electrical loss of the photo-generated carriers is dominated by the recombination at the metal- semiconductor interface. In order to enhance the performance of the solar cells, many studies have been performed on the surface treatment with passivation layer like SiN, SiO2, Al2O3, and a-Si:H. In this work, Al2O3 thin films were investigated to reduce recombination at surface. The Al2O3 thin films have two advantages, such as good passivation properties and back surface field (BSF) effect at rear surface. It is usually deposited by atomic layer deposition (ALD) technique. However, ALD process is a very expensive process and it has rather low deposition rate. In this study, the ICP-assisted reactive magnetron sputtering method was used to deposit Al2O3 thin films. For optimization of the properties of the Al2O3 thin film, various fabrication conditions were controlled, such as ICP RF power, substrate bias voltage and deposition temperature, and argon to oxygen ratio. Chemical states and atomic concentration ratio were analyzed by x-ray photoelectron spectroscopy (XPS). In order to investigate the electrical properties, Al/(Al2O3 or SiO2,/Al2O3)/Si (MIS) devices were fabricated and characterized using the C-V measurement technique (HP 4284A). The detailed characteristics of the Al2O3 passivation thin films manufactured by ICP-assisted reactive magnetron sputtering technique will be shown and discussed.

  • PDF

Diamond Schottky Barrier Diodes With Field Plate (필드 플레이트가 설계된 다이아몬드 쇼트키 장벽 다이오드)

  • Chang, Hae Nyung;Kang, Dong-Won;Ha, Min-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.659-665
    • /
    • 2017
  • Power semiconductor devices required the low on-resistance and high breakdown voltage. Wide band-gap materials opened a new technology of the power devices which promised a thin drift layer at an identical breakdown voltage. The diamond had the wide band-gap of 5.5 eV which induced the low power loss, high breakdown capability, low intrinsic carrier generation, and high operation temperature. We investigated the p-type pseudo-vertical diamond Schottky barrier diodes using a numerical simulation. The impact ionization rate was material to calculating the breakdown voltage. We revised the impact ionization rate of the diamond for adjusting the parallel-plane breakdown field at 10 MV/cm. Effects of the field plate on the breakdown voltage was also analyzed. A conventional diamond Schottky barrier diode without field plate exhibited the high forward current of 0.52 A/mm and low on-resistance of $1.71{\Omega}-mm$ at the forward voltage of 2 V. The simulated breakdown field of the conventional device was 13.3 MV/cm. The breakdown voltage of the conventional device and proposed devices with the $SiO_2$ passivation layer, anode field plate (AFP), and cathode field plate (CFP) was 680, 810, 810, and 1020 V, respectively. The AFP cannot alleviate the concentration of the electric field at the cathode edge. The CFP increased the breakdown voltage with evidences of the electric field and potential. However, we should consider the dielectric breakdown because the ideal breakdown field of the diamond is higher than that of the $SiO_2$, which is widely used as the passivation layer. The real breakdown voltage of the device with CFP decreased from 1020 to 565 V due to the dielectric breakdown.

Effect of Cleaning Processes of Silicon Wafer on Surface Passivation and a-Si:H/c-Si Hetero-Junction Solar Cell Performances (기판 세정특성에 따른 표면 패시배이션 및 a-Si:H/c-Si 이종접합 태양전지 특성변화 분석)

  • Song, Jun-Yong;Jeong, Dae-Young;Kim, Chan-Seok;Park, Sang-Hyun;Cho, Jun-Sik;Song, Jin-Soo;Wang, Jin-Suk;Lee, Jeong-Chul
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.210-216
    • /
    • 2010
  • This paper investigates the dependence of a-Si:H/c-Si passivation and heterojunction solar cell performances on various cleaning processes of silicon wafers. It is observed that the passivation quality of a-Si:H thin-films on c-Si wafers depends highly on the initial H-termination properties of the wafer surface. The effective minority carrier lifetime (MCLT) of highly H-terminated wafer is beneficial for obtaining high quality passivation of a-Si:H/c-Si. The wafers passivated by p(n)-doped a-Si:H layers have low MCLT regardless of the initial H-termination quality. On the other hand, the MCLT of wafers incorporating intrinsic (i) a-Si:H as a passivation layer shows sensitive variation with initial cleaning and H-termination schemes. By applying the improved cleaning processes, we can obtain an MCLT of $100{\mu}sec$ after H-termination and above $600{\mu}sec$ after i a-Si:H thin film deposition. By adapting improved cleaning processes and by improving passivation and doped layers, we can fabricate a-Si:H/c-Si heterojunction solar cells with an active area conversion efficiency of 18.42%, which cells have an open circuit voltage of 0.670V, short circuit current of $37.31\;mA/cm^2$ and fill factor of 0.7374. These cells show more than 20% pseudo efficiency measured by Suns-$V_{oc}$ with an elimination of series resistance.

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

Efficiency Improvement with $Al_2O_3/SiN_x$ Rear Passivation of p-type Mono-crystalline Silicon Solar Cells ($Al_2O_3/SiN_x$ 후면 적층 패시베이션을 이용한 결정질 실리콘 태양전지의 효율 향상 연구)

  • Cheon, Joo Yong;Beak, Sin Hey;Kim, In Seob;Chun, Hui Gon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.47-51
    • /
    • 2013
  • Current research trends of solar cells has focused on the high conversion efficiency and low-cost production technology. Passivation technology that can be easily adapted to mass production. Therefore, this study conducted experiments with aim of the following two methods for the fabrication of high-efficiency crystalline silicon solar cells. In the first task, an attempt is formation of local Al-BSF to a number of locally doped dots to increase the conversion efficiency of solar cells to reduce the loss of $V_{oc}$ overcome. The second major task, rear surface apply in $Al_2O_3/SiN_x$ stack layer, $Al_2O_3$ prominent negative fixed charge characteristics. As the result of task, Local Al-BSF and $Al_2O_3/SiN_x$ stack layer applied to the p-type single crystalline silicon solar cells, the average $V_{oc}$ of 644mV, $I_{sc}$ of 918mV and conversion efficiency of 18.70% were obtained.

Progress in Novel Oxides for Gate Dielectrics and Surface Passivation of GaN/AlGaN Heterostructure Field Effect Transistors

  • Abernathy, C.R.;Gila, B.P.;Onstine, A.H.;Pearton, S.J.;Kim, Ji-Hyun;Luo, B.;Mehandru, R.;Ren, F.;Gillespie, J.K.;Fitch, R.C.;Seweel, J.;Dettmer, R.;Via, G.D.;Crespo, A.;Jenkins, T.J.;Irokawa, Y.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Both MgO and $Sc_2O_3$ are shown to provide low interface state densities (in the $10^{11}{\;}eV^{-1}{\;}cm{\;}^{-2}$ range)on n-and p-GaN, making them useful for gate dielectrics for metal-oxide semiconductor(MOS) devices and also as surface passivation layers to mitigate current collapse in GaN/AlGaN high electron mobility transistors(HEMTs).Clear evidence of inversion has been demonstrated in gate-controlled MOS p-GaN diodes using both types of oxide. Charge pumping measurements on diodes undergoing a high temperature implant activation anneal show a total surface state density of $~3{\;}{\times}{\;}10^{12}{\;}cm^{-2}$. On HEMT structures, both oxides provide effective passivation of surface states and these devices show improved output power. The MgO/GaN structures are also found to be quite radiation-resistant, making them attractive for satellite and terrestrial communication systems requiring a high tolerance to high energy(40MeV) protons.

Passivation Properties of Phosphorus doped Amorphous Silicon Layers for Tunnel Oxide Carrier Selective Contact Solar Cell (터널 산화막 전하선택형 태양전지를 위한 인 도핑된 비정질 실리콘 박막의 패시베이션 특성 연구)

  • Lee, Changhyun;Park, Hyunjung;Song, Hoyoung;Lee, Hyunju;Ohshita, Yoshio;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.4
    • /
    • pp.125-129
    • /
    • 2019
  • Recently, carrier-selective contact solar cells have attracted much interests because of its high efficiency with low recombination current density. In this study, we investigated the effect of phosphorus doped amorphous silicon layer's characteristics on the passivation properties of tunnel oxide passivated carrier-selective contact solar cells. We fabricated symmetric structure sample with poly-Si/SiOx/c-Si by deposition of phosphorus doped amorphous silicon layer on the silicon oxide with subsequent annealing and hydrogenation process. We varied deposition temperature, deposition thickness, and annealing conditions, and blistering, lifetime and passivation quality was evaluated. The result showed that blistering can be controlled by deposition temperature, and passivation quality can be improved by controlling annealing conditions. Finally, we achieved blistering-free electron carrier-selective contact with 730mV of i-Voc, and cell-like structure consisted of front boron emitter and rear passivated contact showed 682mV i-Voc.

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF