• Title/Summary/Keyword: low frequency transformer

Search Result 241, Processing Time 0.021 seconds

Single-Stage Half-Bridge Electronic Ballast Using a Single Coupled Inductor

  • Cho, Yong-Won;Kwon, Bong-Hwan
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.699-707
    • /
    • 2012
  • This paper proposes a single-stage half-bridge electronic ballast with a high power factor using only a single coupled inductor. Compared to conventional high power factor electronic ballasts, the proposed ballast is a simpler circuit with a low cost and a high reliability. The proposed ballast is made up of a power-factor-correction (PFC) circuit and a self-oscillating class-D inverter. The PFC and inverter stages of the proposed ballast are simplified by sharing only a single coupled inductor and two common switches. The proposed PFC circuit can achieve a high power factor and low voltage stresses of the switches. A saturable transformer in the self-oscillating class-D inverter determines the switching frequency of the ballast. Experimental results obtained on a 30W fluorescent lamp are discussed.

Optimal Design of an Antenna for the Detection of Partial Discharges in Insulation Oil (절연유중 부분방전 검출을 위한 안테나의 최적 설계)

  • Lee, Jung-Yoon;Jo, Hyang-Eun;Park, Dae-Won;Kil, Gyung-Suk;Oh, Jae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.4
    • /
    • pp.309-314
    • /
    • 2013
  • This paper dealt with the radiated electromagnetic wave detection of partial discharge (PD) in oil for insulation diagnostics of oil-immersed transformers. Three types of electrode system were fabricated to simulate the insulation defects that could occur in oil-immersed transformers. Frequency components of radiated electromagnetic wave in oil was measured by broadband bi-conical antennas of 300 MHz~2 GHz and a spectrum analyzer of 9 kHz~3 GHz. Frequency component of electromagnetic waves from PD in oil were highly distributed at 500 MHz. From the result, a narrow-band monopole antenna with the center frequency of 500 MHz was fabricated. We could detect PD signal in insulation oil without an influence of external noise by a measurement system which consists of the prototype monopole antenna, a LNA (Low Noise Amplifier), an oscilloscope and a spectrum analyzer.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.

Acoustic Noise Characteristics of Inductor According to Magnetic Powder Core Building Structure for Inverter Application (분말 자성 코어의 형상에 따른 인버터용 인덕터의 소음특성)

  • Yoo, Kwang-Yong;Lee, Byoung-Kuk;Kim, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1591-1599
    • /
    • 2017
  • In power electronics applications which switching frequency is below audible frequency, the acoustic noise and vibration design of magnetics are as important as the efficiency. In the case of the powder core, which is widely used in grid-connected inverters, many researches have been progressed in terms of efficiency. However, there are only few research have been progressed related with acoustic noise and vibrations. In this paper, the Sendust(Fe-Si-Al) powder core material which has low magnetostriction and low core loss is analyzed in terms of acoustic noise and vibration induced by Maxwell force and magnetostriction. Three building structures such as, rectangular, toroidal, and oval shape are designed for 4kW grid-connected inverter, because magnetic properties and the audible noises of the inductor are varied by magnetic core building structures. The effects of the Maxwell force and magnetostriction behaviors varied with core shapes are analyzed by finite element method and experiments. In addition, experiment results of the inductor efficiency are presented according to core building structures.

Compensation of the Secondary Voltage of a Three Winding Coupling Capacitor Voltage Transformer (3권선 CCVT의 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Kim, Yeon-Hee;Zheng, Tai-Ying;Jang, Sung-Il;Kim, Yong-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.938-943
    • /
    • 2008
  • Coupling capacitor voltage transformers(CCVTs) have been used in extra or ultra high voltage systems to obtain the standard low voltage signal for protection and measurement. For fast suppression of the phenomenon of ferroresonance, three winding CCVTs are used instead of two winding CCVTs. A tuning reactor is connected between a capacitor voltage divider and a voltage transformer to reduce the phase angle difference between the primary and secondary voltages in the steady state. Slight distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has significant errors due to the transient components such as dc offset component and/or high frequency components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of a three winding CCVT in the time domain. With the values of the measured secondary voltage of the three winding CCVT, the secondary, tertiary and primary currents and voltages are estimated; then the voltages across the capacitor and the tuning reactor are calculated and then added to the measured voltage. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the three winding CCVT irrespective of the fault distance, the fault impedance and the fault inception angle as well as in the steady state.

A Study on Design and Implementation of the Tesla Coil using Semiconductor Device (반도체 소자를 이용한 테슬라 코일의 설계 및 제작)

  • Kim, Young-Sun;Kim, Dong-Jin;Lee, Ki-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1571-1576
    • /
    • 2016
  • A Tesla coil is an electrical resonant transformer circuit invented by Nikola Tesla in 1891. It is used to produce high-voltage, low-current, high frequency alternating-current electricity. Tesla coil can generate a long streamer with several million volts of electricity as a high voltage device. It is basically consists of a voltage transformer, high voltage capacitor, spark gap, primary coil, secondary coil and toroid. It is difficult to appear in the output size of the streamer is controlled by the spark gap. The general decision method of the length of streamer is to display the electric output in accordance with the design specifications in initial development plan. Design specifications and the electric output is determined by the application of facilities. In this paper the spark gap is replaced with periodic switching semiconductor device to control output voltage easily in order to apply overvoltage protective circuit due to a secondary coil and a performance test. In these days, their main use is for entertainment and educational displays of the museum, although small coils are still used as leak detectors for high vacuum systems.

11-kV Series-Connected H-Bridge Multilevel Converter for Direct Grid Connection of Renewable Energy Systems

  • Islam, Md. Rabiul;Guo, Youguang;Zhu, Jian Guo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.2
    • /
    • pp.70-78
    • /
    • 2012
  • Due to the variable nature of renewable energy resources and power demand by consumers, it is difficult to operate a power system installed with only one type of renewable energy resource. Grid-based renewable generation may be the only solution to overcome this problem. The conventional approach based on a low-voltage converter with power frequency transformer is commonly employed for grid connection of offshore renewable energy systems. Because of the heavy weight and large size of the transformer, the system can be expensive and complex in terms of installation and maintenance. In this paper, an 11-kV series connected H-bridge (SCHB) multilevel voltage source converter (VSC) is proposed to achieve a compact and light direct grid connection of renewable energy systems. This paper presents the design, simulation and analysis of a five level (5L)-SCHB and an eleven level (11L)-SCHB VSC for 11-kV grid-based renewable energy systems. The performance, cost, modulation scheme and harmonic spectra of the converter are analyzed.

Design of the self-oscillation UV flash lamp power supply and the characteristic of its operation using self-resonance of the transformer (트랜스포머의 자가 공진(Self-Resonance)특성을 이용한 자가 발진(Self-Oscillation) UV(Ultra Violet) 발생 플래시램프 전원장치설계 및 그 동작 특성)

  • Kim, Shin-Hyo;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.48-55
    • /
    • 2014
  • These Xenon flashlamp power supply for Ultra Violet has converter with high voltage conversion ratio. General model is composed of transformer with high voltage conversion ratio and voltage doubler rectifier circuit. Purpose of power supply leads dielectric breakdown of Xenon flashlamp and passes current rapidly. When passing current, it has to limit current to avoid over-heat, damage of electrode and acceleration of gas oxidation which are cause of performance degradation of lamps. Generally, inductors and resistors, which are called as "Ballast," are used to limit currents. Generally, Transformer has high turn ratio to make high voltages. But we can get high voltages using the transformer with low turn ratio which is driven with self resonance. Also, an advantage of self resonance is to make a circuit simply through impedance of transformer in resonance frequency which filters output voltage. As using an unique impedance of transformer, the circuit does not need other impedance elements like the ballast. So the power supply assures high efficiency of the arc discharge.

Study on the Magnetic Shield Effect of Carbon-based Materials at Extremely Low Frequency (탄소계 소재를 이용한 극저주파 영역에서의 자기 차폐효과 연구)

  • Oh, Seong Moon;Kang, Dong Su;Lee, Sang Min;Baek, Un Gyeong;Roh, Jae Seung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • To examine the magnetic shielding effect for carbon-based materials at extremely low frequencies (60 Hz), two types of carbon black (Super-P and Denka Black) and a natural graphite (HC-198) were mixed into organic binder at 10 wt.% to produce a coating solution, and a powder coating with varying thickness was applied on an aluminum disk measuring 88 mm in radius. A device was developed to measure the sheielding effect at extremely low frequencies. A closed circuit was achieved by connecting a transformer and a resistor. The applied voltage was fixed at 65 V, and the magnetic field was measured to being the range of 4.95~5.10 mG. Depending on the thickness of the coating layer, the magnetic field showed a decreasing trend. The maximum decrease in the magnetic field of 38.3% was measured when natural graphite was coated with specimens averaging $455{\mu}m$. This study confirmed that carbon-based materials enable magnetic shielding at extremely low frequencies, and that the magnetic shielding effect can be enhanced by varying the coating thickness.

Detection Technique of Partial Discharge by a Capacitive Probe in Cast-resin Transformers (몰드변압기에서 용량성 프로브에 의한 부분방전 검출 기술)

  • Jung, Kwang-Seok;Park, Dae-Won;Cha, Hyeon-Kyu;Cha, Sang-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.319-324
    • /
    • 2011
  • This paper dealt with a partial discharge (PD) detection method for insulation diagnosis in cast-resin transformers. To detect PD pulse, a planar-capacitive probe was designed and fabricated. The probe has no insulation problem and can be installed on cast-resin transformers even in operation since it does not connect with high voltage conductor. The PD measurement system consists of the capacitive probe, a coupling network of 100 [kHz] low-cutoff frequency, and an amplifier with a gain of 40 [dB] and a frequency bandwidth of 500 [Hz]~45 [MHz]. A plane-needle and a plane-plane electrode system were fabricated to simulate insulation defects in a cast-resin transformer. Sensitivity of the PD measurement system, which is evaluated by a standard calibrator was 0.35 [mV/pC] for positive and 0.45 [mV/pC] for negative, respectively. The PD detection by the capacitive probe was less sensitive than that by a coupling capacitor according to IEC 60270, but we could analyze the magnitude and the phase distribution of PD pulse.