• 제목/요약/키워드: low energy consumption

검색결과 1,391건 처리시간 0.037초

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

소득수준과 주택특성에 따른 난방에너지 소비의 역진적 인과구조 (The Regressive Causal Structure of Heating Energy Consumption Affected by Household Income and Housing Characteristics)

  • 최막중;정이레
    • 국토계획
    • /
    • 제53권6호
    • /
    • pp.101-116
    • /
    • 2018
  • Paying an attention to the issue of energy poverty of low-income households and ensuing regressivity of energy consumption, this study empirically analyzes the effects of both household and housing characteristics on heating energy consumption in an integrated way and identifies their causal structure based on the 2016 Korea Housing Survey data provided by the Korean government. Multiple regression analysis shows that household income and deteriorated level of housing, such as age and degree of cracks have positive effects and floor area of housing has a negative effect on the heating energy consumption per unit area of housing (HECPUH). Path analyses further reveal that the direct effect of household income on HECPUH is offset by the indirect effects that are mediated by deteriorated level and floor area of housing, making the total effect statistically insignificant. As a result, there is no significant difference in HECPUH across all income strata, implying that low-income (high-income) households pay more (less) heating costs relative to their income level, since they reside in the houses with relatively low (high) energy efficiency. To deal with this regressive causal structure of energy consumption, a policy option is recommended to improve energy efficiency of low-income housing through the government assistance in its maintenance and repair.

Policy research and energy structure optimization under the constraint of low carbon emissions of Hebei Province in China

  • Sun, Wei;Ye, Minquan;Xu, Yanfeng
    • Environmental Engineering Research
    • /
    • 제21권4호
    • /
    • pp.409-419
    • /
    • 2016
  • As a major energy consumption province, the issue about the carbon emissions in Hebei Province, China has been concerned by the government. The carbon emissions can be effectively reduced due to a more rational energy consumption structure. Thus, in this paper the constraint of low carbon emissions is considered as a foundation and four energies--coal, petroleum, natural gas and electricity including wind power, nuclear power and hydro-power etc are selected as the main analysis objects of the adjustment of energy structure. This paper takes energy cost minimum and carbon trading cost minimum as the objective functions based on the economic growth, energy saving and emission reduction targets and constructs an optimization model of energy consumption structure. And empirical research about energy consumption structure optimization in 2015 and 2020 is carried out based on the energy consumption data in Hebei Province, China during the period 1995-2013, which indicates that the energy consumption in Hebei dominated by coal cannot be replaced in the next seven years, from 2014 to 2020, when the coal consumption proportion is still up to 85.93%. Finally, the corresponding policy suggestions are put forward, according to the results of the energy structure optimization in Hebei Province.

소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법 (Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis)

  • 이창석;나두영;김용태
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.793-798
    • /
    • 2010
  • 본 논문에서는 소비 에너지 분석을 통한 이족보행로봇의 저전력 보행 보정 기법을 제안하였다. 먼저 이족 로봇의 보행 기본자세의 각 축별 소비 에너지를 분석하여 소비 에너지를 절감하는 기본 보행 자세를 구현하였다. 이족 로봇의 보행 기본자세를 무릎 구부리는 자세로 정하여 소비에너지를 줄이고, 무게중심을 낮추어 자세 안정성을 향상하였다. 이족로봇의 보행시 모터 전류를 측정하여 좌우 다리의 소비 전력을 분석하고, 이를 바탕으로 좌우 에너지 불균형을 제거하도록 보행 자세를 보정하였다. 보행 기본자세의 좌우 소비 전력을 고르게 분포시키게 자세를 보정함으로서 전체 소비 에너지를 감소시키고, 로봇의 좌우 자세 균형을 맞추어 보행시 안정성을 향상하였다. 제안한 소비 에너지 분석을 통한 저전력 보행 구현 방법은 임베디드시스템 기반의 소형 이족 로봇을 실제 제작하여 보행 실험을 통해 성능을 검증하였다.

사무소건물의 에너지절약형 냉방시스템 성능분석에 관한 연구 (A Study on the Perfomance Analysis of Low Energy Cooling Systems in Office building)

  • 박창봉;이언구
    • 한국태양에너지학회 논문집
    • /
    • 제30권6호
    • /
    • pp.89-94
    • /
    • 2010
  • A large portion of the energy cost of a building is cooling and heating to maintain a comfortable indoor environment. Air conditioning is now one of the important parts in the building design, as increase in energy consumption and pollutant emission in energy conversion process. In this study, elements that affects the energy consumption of model building are identified and the perfomance analysis of the alternative a Low Energy Cooling Systems considering characteristics of model building and energy saving performance is analyzed. In this study, elements that affect the energy consumption of office building are identified and energy saving performance of the alternative air conditioning system is analyzed. As a result, applied to earn and suggest basic data for energy saving measures. In this study, EnergyPlus simulation program was used to evaluate the energy load when alternative Low Energy Cooling Systems are applied to the model building. The reliability of simulation program is verified by comparing actual energy load from operation data of building management office and predicted energy load using simulation program. For Low Energy Cooling System application which considers the purpose and characteristics of the building, reasonable and energy-saving air conditioning method obtained by analyzing energy consumption elements for each expected air conditioning methods is used to deduct result of this study.

Optimization of Earthwork Operation for Energy-saving using Discrete Event Simulation

  • Yi, Chang-Yong;Lee, Dong-Eun
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.537-539
    • /
    • 2015
  • considerate operation is a major issue in the equipment-intensive operation. Identifying an optimal equipment combination is important to achieve low-energy operations. An Earthwork operation planning system, which measures the energy consumption of construction operations by taking into account construction equipments' engineering attributes (e.g., weight, capacity, energy consumption rate, etc.) and operation conditions (e.g., road condition, attributes of materials to be moved, geometric information, etc.), is essential to achieve the low-energy consumption. This study develops an automated computerized system which identifies an optimal earthmoving equipment fleet minimizing the energy consumption. The system imports a standard template of earthmoving operation model and compares numerous scenarios using alternative equipment allocation plans. It finds the fleet that minimizes the energy consumption by enumerating all cases using sensitivity analysis. A case study is presented to verify the validity of the system.

  • PDF

공기압축기 소비에너지 평가에 관한 연구 (A Study on the Evaluation of Energy Consumption of the Air Compressor)

  • 장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권2호
    • /
    • pp.38-44
    • /
    • 2020
  • Various efforts have been initiated to reduce the energy consumption of the compressor as it is one of the approaches to saving a large portion of the fixed cost of the production site. Various results of reducing the energy consumption of the compressor have been reported, but to reduce the energy consumption of the compressors fundamentally, regular management of the compressor should ensure optimum operation. This requires periodic on-site visits by experts, but is often overlooked as a cost issue, resulting in the use of the compressor in low-efficiency conditions. Thus, it is necessary to develop a low-cost evaluation technology for compressor condition monitoring and efficiency analysis to ensure that the compressor is always driven at the optimum efficiency without imposing undue burden on the compressor user. In this study, a sensor was installed at the inlet, outlet, and power supply of the compressor, and a method for evaluating the energy consumption of the compressor using the minimum sensor was derived. The experimental results are presented to show the validity of the proposed method. It was confirmed that the energy consumption of the compressor can be easily as well as efficiently evaluated by using the method developed in this study.

국내 가구의 전력소비 수준에 따른 특성 및 결정요인 (Characteristics and Determinants of Household Electricity Consumption for Different Levels of Electricity Use in Korea)

  • 김용래;김민정
    • 전기학회논문지
    • /
    • 제66권7호
    • /
    • pp.1025-1031
    • /
    • 2017
  • This study compares the characteristics and the determinants of household electricity consumption for low electricity consuming and high electricity consuming households. The data are drawn from a household energy consumption sample survey by Korea Energy Economics Institute in 2015. The results show the differences in socio-demographic, dwelling, and electricity consumption characteristics between two households. Next, the factors affecting the household's electricity consumption are investigated. Common factor affecting the electricity consumption function is only the number of electrical appliances. There are also the differences in major determinants of the household's electricity consumption functions for two households. The results of this study would be useful for understanding socio-demographic, dwelling, and electricity consumption characteristics of low electricity consuming and high electricity consuming households.

에너지 절감을 위한 건설장비 조합 최적화 방법 연구 (Construction Equipment Fleet Optimization for Saving Fuel Consumption)

  • 이창용;이홍철;이동은
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF

이중 및 삼중 로이창호의 일사획득에 따른 사무소건물의 냉난방에너지 성능분석 (Heating & Cooling Energy Performance Analysis of an Office Building according to SHGC level of the Double & Triple Glazing with Low-e Coating)

  • 김효중;박재성;신우철;윤종호
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.90-95
    • /
    • 2008
  • An SHGC(Solar Heat Gain Coefficient) is a determinant of total flux of solar radiation coming indoor and a critical factor in evaluating heating and cooling load. U-value represents heat loss while SHGC denominates heat gain. Recently, windows with high solar gain, mid solar gain or low solar gain are being produced with the development of Low-E coating technology. This study evaluated changes in energy consumption for heating and cooling according to changes in SHGC when using double-layered Low-E glass and triple layered Low-E glass in relation to double layered clear glass as base glass. An Office was chosen for the evaluation. For deriving optical properties of each window, WINDOW 5 by LBNL, an U.S. based company. and the results were analyzed to evaluate performance of heat and cooling energy on anannual basis using ESP-r, an energy interpretation program. Compared to the energy consumption of the double layered clear glass, the double layered Low-E glass with high solar gain consumed $69.5kWh/m^2,yr$, 9% more than the double layered clear glass in cooling energy. The one with mid solar gain consumed $63.1kWh/m^2,yr$, 1% less than the base glass while the one with low solar gain consumed $57.6kWh/m^2,yr$, 10% less than the base glass. When it comes to tripled layered glass, the ones with high solar showed 2% of increase respectively while the one with mid solar gain and low solar gain resulted 5% and 11% in decrease in energy consumption due to low acquisition of solar radiation. With respect to cooling energy. it was found that the lower the SHGC. the less energy consumption becomes.

  • PDF