• Title/Summary/Keyword: low density lipoprotein (LDL) oxidation

Search Result 98, Processing Time 0.022 seconds

Antioxidative Effects of Cichorium intybus Root Extract on LDL (Low Density Lipoprotein) Oxidation

  • Kim, Tae-Woong;Yang, Ki-Sook
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.431-436
    • /
    • 2001
  • The water extract of Cichorium intybus (WECI) showed a remarkable antioxidative effect on LDL, and inhibitory effects on the production of thiobarbituric acid reactive substance and the Degradation of fatty acids in LDL. Vitamin 1 and unsaturated fatty acids in LDL were protected by adding WECI from the effects of metal catalyzed LDL oxidation. From the results obtained, we conclude that LDL oxidation is inhibited in vitro by the addition of WECI, and that LDL is protected by WECI from oxidative attack, as shown by agarose gel electrohporesis.

  • PDF

Antioxidative Activities of Triterpenoids and Lignans from Acanthopanax divaricatus var. albeofructus (백모오가피로부터 분리된 트리터페노이드 및 리그난의 항산화작용)

  • 김지연;양기숙
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.236-240
    • /
    • 2004
  • Acanthopanax species (Araliaceae) traditionally has been used as analgesics, stimulant of immune system, and replenishment of body functions. Acanthopanax divaricatus var. albeofructus is indigenous plant to Korea. The antioxidant activities of compounds from A divaricatus var. albeofructus were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and thiobarbituric acid reactive substance (TBARS) assay on human plasma low-density lipoprotein (LDL). The triterpenoid and lignan constituents from this plant showed antioxidant activities and the lignan, l-sesamin exhibited the most potent antioxidant activity in Cu$^{2+}$ -induced LDL oxidation.n.

Function Properties of Low Density Lipoprotein (LDL) and Oxidized-LDL (저밀도 지질단백질 및 산화 LDL(Oxidized-LDL)의 특성)

  • Tae-Koong Kim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.3
    • /
    • pp.530-539
    • /
    • 1994
  • All lipoproteins are made up of three major classes of lipids : triglycerides, cholesterol, and phospholipids. Lipoproteins vary in their relative content of these lipids as well as in size and protein content. Human low density lipoprotein (LDL) is a main carrier for cholesterol in the blood stream, and it is well established that cholesterol deposits in the arteries stem primarily from LDL and that increased levels of plasma LDL correlated with in increased risk of atherosclerosis. Various lines of research provide strong evidence that lDL may become oxidized in vivo and that oxidized-LDL is the species involved in the formation of early atherosclerotic lesions. the most crucial findings in this context are the following : (1) Oxidized -LDL has chemotactic properties and if present in the intimal space of the arteries would recruit blood monocytes which then can develop into tissue macrophages ; (2) marcrophages take up oxidized-LDL unregulated to from lipid laden foam cells ; (3) Oxdized-LDLis highly cytotoxic and could be responsible for damage of the endothelial layer and for the destruction of smooth muscle cells.

  • PDF

Effect of Elsholtzia splendens Extracts on the Blood Lipid Profile and Hepatotoxicity of the Mice

  • Choi, Eun-Jeong;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.413-416
    • /
    • 2008
  • Effects of extracts obtained from the flowers of Elsholtzia splendens on the serum lipid profile and hepatotoxicity in mice were investigated. Female ICR mice were given E. splendens ethanolic extract (ESEs) orally at a dose of 10 or 50 mg/kg BW for 50 days. Significant dose-dependent decreases in triglyceride and low-density lipoprotein (LDL)-cholesterol of serum were observed. In addition, ESEs prolonged the lag-time of LDL oxidation in vitro. In the serum of ICE mice given ESEs orally at 10 and 50 mg/kg BW, the serum levels of aspartate aminotransferase (AST) and lactic dehydrogenase (LDH) increased significantly, while total protein, albumin, creatinine, alanine aminotransferase (ALT), and total bilirubin did not change. Therefore, ESEs may be beneficial to human health, although it has some hepatotoxicity.

Inhibitory Effect of Chlorogenic Acid on Low-Density Lipoprotein Oxidation Induced by Cu ion

  • Jeon, Eun-Raye;Karki, Rajendra;Kim, Dong-Wook
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.519-525
    • /
    • 2010
  • Chlorogenic acid, formed of an ester of caffeic acid and quinic acid, which is naturally abundant in many plant species, was used as a model O-dihydoxy phenolic compound. In the previous study, we have reported that the isolated constituent from Apocynum venetum leaves has an inhibitory effect on $Cu^{2+}$-induced oxidative modification of low-density lipoprotein (LDL). Among them, chlorogenic acid showed the most potent anti-LDL oxidative activity than other compounds. For the reason, we investigated the inhibitory effect of the chlorogenic acid on $Cu^{2+}$-induced oxidative modification of LDL, monitored a lag time in the conjugated-diene formation and TBARS formation, and measured TNBS free amino acid group, and form cell formation in vitro system. The TBARS- and diene- formation were strongly inhibited by chlorogenic acid ($0{\sim}100\;{\mu}g/ml$) with dose dependent manner. On the other hand, TNBS reactive lysine amino groups on LDL oxidation were protected by chlorogenic acid- treated cell group. Therefore, chlorogenic acid inhibited to cholesterol accumulation in the isolated peritoneal macrophage.

Antioxidant Activity of Green Tea Extracts toward Human Low Density Lipoprotein (사람의 Low Density Lipoprotein에 대한 녹차의 항산화 활성)

  • Park, Chun-Ok;Jin, Seung-Heun;Ryu, Beung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.850-858
    • /
    • 1996
  • Green tea leaves 12.5 g were extracted twice with 500 ml boiling water. The green tea extract (GTE) contained 4.67 mg solid. The GTE contained polyphenols sush as 54.12% (-) epicatechin gallate, 26.21% (-) epicatechin, 10.71% epicatechin gallate, 7.09% (-) epicatechin and 1.85% catechin. The GTE inhibited the copper-catalyzed oxidation of human LDL at the concentrations of 50 and $100\;{\mu}g/ml$ GTE in the presence of $5\;{\mu}M$ $CuSO_{4}$. The electrophoretic mobility of the LDL oxidized in the presence of $5\;{\mu}M\;CuSO_{4}$ was higher than that of the native LDL. The GTE also inhibited LDL oxidation induced by J774, human monocyte-derived macrophages and vascular endotherial cells. The LDL modified by copper or cells was inhibited by human macrophages at a much greater rate than native LDL in the presence of GTE. The GTE was found to be a potent inhibitor of modification of LDL. GTE inhibited the uptake of cell-modified $^(125)I-labelled$ LDL by macrophages. The formation of conjugated dienes was strongly inhibited in the presence of 50 or $100\;{\mu}g/ml$ GTE.

  • PDF

Enhanced Uptake of Modified Low-Density Lipoprotein by Eicosapentaenoic Acid-Treated THP-1 Macrophages

  • Kang, Young-Hee;Park, Sung-Hee;Kang, Jung-Sook;Park, Jung-Han-Yoon
    • Nutritional Sciences
    • /
    • v.4 no.1
    • /
    • pp.26-33
    • /
    • 2001
  • Animal and clinical studies as well as epidemiological data have provided convincing evidence that n-3 polyunsaturated fatty acids can protect against atherosclerosis. However, the effects of the fatty acids on atherogenesis are contradictory. This discrepancy could derive from great susceptibility of the fatty acids to oxidation. We investigated the effect of eicosapentaenoic aced(EPA) on cellular atherogenesis via the scavenger receptor of THP-1 derived macrophages. THP-1 cells were fully differentiated into macrophages by incubating with phorbol 12-myristate 13-acetate for seven days. Atherogenic features of EPA were compared by subsitituting for linoleic acid (LA). Macrophages were also incubated without treatment of the fatty acids as controls. EPA (5-50 nmol/mL) was not cytotoxic and did not measurably induce cellular oxidation compared to bovine serum albumin (BSA) vehicle or identical doses of LA. EPA increased macrophage uptake and degradation of acetylated LDL(AcLDL) up to 14% and 88%, respectively. EPA increased markedly total cellular sterol synthesis and heparin-releasable lipoprotein lipase activity of macrophages, indicating that EPA may enhance accumulation of cellular cholesteryl ester and possibly facilitate formation of foam cells. These results demonstrate that EPA promotes the modified LDL-triggered atherosclerotic process by the modulation of the scavenger receptor and the activation of LPL in macrophages.

  • PDF

Diabetic Atherosclerosis and Glycation of LDL(Low Density Lipoprotein)

  • Park, Young-June;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.134-142
    • /
    • 1996
  • Diabetes carries an increased risk of atherosclerotic disease that is not fully explained by known car-diovascular risk factors. There is accumulating evidence that advanced glycation of structural proteins, and oxidation and glycation of circulating lipoproteins, are implicated in the pathogenesis of diabetic ather-osclerosis. Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the ather-ogenic potential of certain plasma constituents, including low density lipoptotein(LDL). Glycation of LDL is significant increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls ; enhanced uptake of LDL by the macrophages, thus stimulating foam cell formation ; increased platelet aggregation; formation of LDL-immune complexes ; and generation of oxygen free radicals, resulting on oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterzied by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation" occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age : in diabetes, their rate of accumulate is accelerated. Inhibition of glycation, oxidation and glycoxidation may form the basis of future antiaterogenic strategies in both diabetic and nondiabetic individuals.dividuals.

  • PDF

Total Phenolic Contents, Radical Scavenging Capacities and Inhibitory Effects on Lipid Peroxidation and LDL Oxidation of Prunus persica Branch

  • Yi, Hyo-Seung;Park, Won-Hwan;Lim, Sun-Hee;Moon, Jin-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1309-1314
    • /
    • 2008
  • This study was undertaken to elucidate the antioxidant activity of the ethanol (EEPB) and water (WEPB) extracts of Prunus persica branches. The extracts contained a high phenolic content and revealed a potent hydrogen donating activity in DPPH scavenging assay. Compared to $\alpha$-tocopherol, EEPB (p < 0.001) and WEPB (p < 0.05) significantly inhibited $FeCl_2$-ascorbic acid-induced lipid peroxidation, and also exhibited potent antiradical activities against hydroxyl radical, superoxide anion, nitric oxide and peroxynitrite. In copper- and AAPH-mediated human low-density lipoprotein (LDL) oxidation systems, the extracts demonstrated a strong antioxidant function by metal chelating, rather than direct scavenging, action. Furthermore, EEPB at 5 ${\mu}g/mL$ concentration showed 80.77% inhibition of the electrophoretic mobility of LDL, compared to 77.69% for ascorbic acid and 76.92% for BHT. These results suggest that PB branch extracts may protect against oxidative stress-induced diseases.

Effects of Samkieum on LDL Oxidation in Macrophage Cell (지단백산화(脂蛋白酸化)에 따른 대식세포(大食細胞) 활성(活性)에 미치는 삼기음(三氣飮)의 영향(影響))

  • Lee, Hee-Jo;Hwang, Gwi-Seo;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.108-117
    • /
    • 2006
  • The oxidative notification of low density lipoprotein(LDL) has been implicated in the development of atherosclerosis. Oxidized LDL are found in macrophage foam cell, and it can induce an macrophage proliferation in atherosclerotic plaque. In this study, we investigated the hypothesis that Samkieum may reduce atherosclerosis by lowering the oxidiazability of LDL, To achieve this goal, we examined the effect of Samkieum on LDL oxidation nitric oxide production in mouse macrophage cell line, RAW264.7, and the effect of Samkieum on cupuric sulfate-induced cytotoxicity, LDH release, and macrophage activity. Samkieum inhibited the generation of oxidized LDL from native LDL in RAW264.7 cell culture, and decreased the release of LDH from cupric sulfate-stimulated RAW264.7 cell. In other experiments, Samkieum activated RAW264.7 cell, and prolonged the survival time, and increased nitric oxide production in Raw 264.7 cells.

  • PDF