• Title/Summary/Keyword: low concrete strength

Search Result 1,245, Processing Time 0.04 seconds

Fundamental characteristics of high early strength low heat concrete according to mineral binder and high early strength material combination (광물질 결합재 및 조강형 재료 조합에 따른 조강형 저발열 콘크리트의 기초적 특성)

  • Kim, Kyoungmin;Son, Hojung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.27-32
    • /
    • 2014
  • This study analyzed the fundamental characteristics of concrete according to a ternary system mixing in order to reduce hydration heat of mass concrete and to improve early age strength. The results are as follows. The fluidity of unconsolidated concrete satisfied the target scope regardless of the binder conditions. When the replacement ratio between FA and BS increased, the slump of low heat-A mix and low heat-B mix increased, and air content was not affected by the change of binders. As for setting time, low heat cement mix had the fastest regardless of W/B, and high early strength low heat mix achieved 6 hours' reduction compared with low heat-B mix at initial set, and 12 hours' reduction at the final set respectively. As for the simple hydration heat, the low mix peak temperature was the highest and low heat-B mix had the lowest temperature. And high early strength low heat mix was similar with that of low heat-B. The compressive strength of hardened concrete had similar strength scope in all mixes except for low heat-B mix at early ages, and had unexceptionally similar one without huge differences at long-term ages.

A Study on Securing Early Strength of Concrete in a Low Temperature Time (저온기 콘크리트의 조기압축강도 확보방안에 관한 연구)

  • Lee, Do-Bum;Choi, Il-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.273-276
    • /
    • 2004
  • Recently. cold weather constructions were popularized because of the importance of construction term. The special method about mix design and curing of concrete was being planned to conduct cold weather constructions, but these method were not considered in a low temperature time. A Strength revelation of concrete is delayed in a curing condition of low temperature. If a construction was loaded in this case, cracks or remaining deformations are generated in a construction. So, a strength revelation characteristic in early age was investigated to secure early strength of concrete in curing condition of a low temperature. In this study, the method about concrete mix design was presented to secure construction safety in a low temperature time.

  • PDF

Strength Development of Low Heat Portland Cement Concrete according of Substitution of Fly-ash in High Strength Range (플라이 애쉬 치환율에 따른 저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Kim, Tae-Hong;Ha, Jae-Dam;Um, Tai-Sun;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.603-606
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete according of addition of fly-ash in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and construction.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part 2. Engineering Properties of Hardened concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화 콘크리트의 공학적 특성에 관한 실 험적 연구 (제 2보. 경화콘크리트의 공학적 특성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.84-87
    • /
    • 1995
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admisture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete. it is presented that using admixtures like flyash and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

Engineering Properties of Concrete Incorporating Cement Kiln Dust with W/B and Fluidity (W/B 및 유동성 변화에 따른 시멘트 킬른더스트 혼입 콘크리트의 공학적 특성)

  • Joo, Eun-Hi;Shon, Myeong-Soo;Cha, Cheon-Soo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.628-631
    • /
    • 2004
  • In this paper, mechanical properties of concrete incorporating CKD are discussed with W/B and fluidity. For setting properties, an increase in W/B retarded setting time greatly in $5^{\circ}C$, while accelerated in $20^{\circ}C$. For fluidity, an increase in slump delayed the setting time with dosage of SP agent. The presence of CKD has little influence on setting time compared with plain concrete. For compressive strength, an increase in maturity enhanced compressive strength. Fluidity had no relation to compressive strength. At low curing temperature, concrete with CKD has slight strength loss compared with plain concrete. However, remarkable strength loss at low curing temperature in early stage was not found, which can be applicable to low temperature environment concrete placing.

  • PDF

A Study of Influencing Factors on Compressive Strength of Concrete Frozen at Early Ages (초기동해를 입은 콘크리트의 압축강도에 미치는 영향인자에 관한 연구)

  • 배수원;김진근;권기주;정원섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.527-532
    • /
    • 2003
  • When fresh concrete is exposed to sufficiently low temperature, the free water in the concrete is cooled below its freezing point and transforms into ice, which causes decrease in compressive strength of concrete. Of the many influencing factors on the loss of compressive strength, the age of concrete at the beginning of freezing, water-cement ratio, and cement-type are significantly important. The objective of this study is to examine how the these factors affect the compressive strength of concrete frozen at early ages. The results from the tests showed that as age at the beginning of freezing is delayed and water-cement ratio is low, the loss of compressive strength decreases. In addition, concrete made with high-early-strength cement is less susceptible to frost damage than concrete made with ordinary portland cement.

  • PDF

Improvement of the Early Age Strength of Low Cement Concrete Using High Volume Mineral Admixture

  • Park, Jong-Ho;Kim, Yong-Ro;Song, Young-Chan;Song, Dong Yub;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.566-574
    • /
    • 2012
  • To address the problem of global warming, consumption of cement, the main material of concrete, should be decreased. Unfortunately, when industrial by-products are used in large quantities as admixture, the early age strength of concrete will be decreased, reducing its viability for use in concrete structures. Therefore, in this study, the application of an ionization accelerator and alkaline activator as addition agent of superplasticizer were investigated to secure a similar early age strength to that of normal concrete, thus increasing the viability of low cement concrete. Through the investigation, it was found that specimens that used a combination of Alkaline-activator (Na2Sio3) and ionization accelerator (Amine) had the highest early and long-age compressive strength. From this, we can determine an appropriate range of application of superplasticizer to improve early-age compressive strength of low cement concrete.

The Effect of Early Frost Damage after Placement on Compressive Strength of Concrete (타설 직후의 동해가 콘크리트의 압축강도에 미치는 효과)

  • Lee, Yun;Kim, Jin-Keun;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1199-1202
    • /
    • 2001
  • The objective of this study is to examine the effect of frost damage immediately after placement on compressive strength of concrete. Obviously frost damage produced under low curing temperature at early ages causes the loss of compressive strength of concrete. In order to find the degrees of the loss of compressive strength, compressive strength tests was peformed at 7 and 28-day ages on concrete specimen with various curing temperature history. The results from the tests showed that the loss of compressive strength relative to concrete cured under isothermal temperature at $20^{\circ}C$ was generally from 20 to 50% for 7-day ages and below 20% for 28 day ages. Considering the serious loss of compressive strength over 50% for some cases, careful attention may be needed to placing of concrete under low atmospheric temperature.

  • PDF

Strength of Low Rise Structural Walls Using High Strength Concrete (고강도 콘크리트를 사용한 저층형 내력벽의 강도)

  • 윤현도;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.407-410
    • /
    • 1999
  • An experimental investigation to study the behavior of low rise structural walls using high strength concrete is presented. The test parameter included in the study were the level of constant axial load. The shear strength of walls is predicted by the design provision given in the current the American Concrete Institute Building Code ACI 318-95 and Architectural Institute Japan Code AIJ. The predictions are compared with the test results reported herein as well as those available in the literature.

  • PDF