• Title/Summary/Keyword: low cement

Search Result 1,074, Processing Time 0.028 seconds

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

Low & Intermediate Level Radioactive Waste Vitrification Using Plasma Arc Melting Technology

  • Min Byeong-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.482-496
    • /
    • 2003
  • effectiveness of the PAM graphite-electrode technology for the treatment of many types of low-level radioactive waste including : combustible material, solidified resins in cement, inorganic materials, steel, glass, and solidified boric acid cement. The objectives of PAM-200 evaluation were to verify that 1) the facility meets air emission regulations, 2) the facility can be safely operated when processing hazardous and radioactive materials and 3) satisfactory final waste forms can be produced. Results, derived from KAERI's(Korea Atomic Energy Research Institute) analyses for samples of vitrified product, scrubbing solution and offgas collected during test period, show that PAM-200 can treat radioactive wastes as well as hazardous wastes with toxic constituents and radionuclides contained in the offgas exiting from the stack to the environment controlled to be far lower than the limit regulated by air conservation law and atomic law.

Temperature Crack Control in Slab Type구s Mass Concrete Structures (슬래브형 매스콘크리트 구조물의 온도균열제어)

  • 김동석;구본창;하재담;진형하;오승제;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.333-336
    • /
    • 1999
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as mat-slab of nuclear reactor buildings, dams or large footings, foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, pre-cooling which lowers the initial temperature of fresh concrete with ice flake, pipe cooling which cools the temperature of concrete with flowing water, design change which considers steel bar reinforcement, operation control and so on. The Aim of this paper is to verify the effect of low heat blended cement in reducing thermal stress in slab type's mass concrete such as container harbor structures.

  • PDF

Application of Waste Foundry Sand to Concrete-Based Product Having Low Water Cement Ratio (낮은 W/C비를 갖는 콘크리트 제품에 대한 폐주물사의 적용)

  • 이대경;김동주;조홍준;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • Because the WFS(Waste Foundry Sand), by-product of a casting factory, is generally a smaller particle than a fine aggregate, it has a bad influence on quality of concrete. Especially, the grading of aggregate is a very important factor in the case of concrete-based products having low water cement ratio manufactured by vibration and pressing method. Therefore, it is necessary to use WFS with the suitable grading of aggregate that it don't has a bad Influence on the quality of concrete-based products. This study investigated the suitable using proportion of WFS by means of the composition method of aggregate suggested by Driscoll. The results showed that it was desirable to use 10% of WFS since higher strength was developed with that amount.

  • PDF

Optimal Design of Cement Mortar Pouring type Paved Track (시멘트모르터 충진형 포장제도의 최적 설계)

  • Lee, Il-Wha
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.222-229
    • /
    • 2006
  • Recently, the development of the paved track is required as a low-maintenance of conventional line. The main reason is that the line capacity and bearing of track are increased progressively. The important factors of paved track are stability and applicability. To be based on this subject, Cement Mortar Pouring(CMP) paved track is developed. CMP paved track is a kind of ballast reinforced track using the prepacked concrete technique. The most important thing to design the paved track is to optimize the track structure considering various conditions. Because construction environment is very limited, cost is expensive and it has very complicated behavior. On this paper, structural characteristics of the paved track are investigated using the 3D finite element analysis to verify the optimized structure of the CMP track.

A Study on Field Application of the Mass Concrete using Hydration Temperature-Reducing Binder - Focused on the Mock-up Test- (수화 온도 저감형 결합재를 이용한 매스콘크리트 현장적용에 관한 연구 -현장 Mock-up Test를 중심으로-)

  • Seo, Il;Kwon, Hae-Won;Park, Hee-Gon;Kim, Yoo-Jin;Kim, Woo-Jae;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.371-372
    • /
    • 2010
  • This study was a result of mock-up test for the field application which was compared between low heat cement and temperature-reducing binder with the way of temperature crack reduction. The result of mock-up test was shown that the heat of hydration from the low heat cement and the temperature-reducing binder indicated 44 and $54^{\circ}C$ respectively.

  • PDF

Thermal Crack Control about of LNG in Inchon (인천 LNG 지하탱크 Bottom 의 온도균열제어)

  • Koo, Bon-Chang;Ha, Sang-Wook;Kim, Dong-Seuk;Ha, Jae-Dam;Lee, Jong-Ryul;Kwon, Young-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.291-296
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is s serious problem, particularly in concrete structures such as bridge piers. thick walls, box type walls, mat-slab of nuclear reactor building, dams of foundations of high rise buildings, etc. As a result of the temperature rise and restriction condition of foundation, the thermal stress which way induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which consider steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis, Secondly it shows the application of the cracks control technique like the bottom of No.15,16 Underground LNG Tank in Inchon.

  • PDF

Freezing Temperature and Setting Properties of Cement Mortar Agent for Enduring Sold Climate (내한성 혼화제를 이용한 세멘트 모르터의 동결온도 및 응결특성)

  • 홍상희;김현우;김정진;이백수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.199-204
    • /
    • 2000
  • When fresh concrete is exposed to low temperature, the concrete may suffer from the frost damage at early ages and the strength development may be delayed. To solve such problems of cold weather concreting, admixtures called agent for enduring cold climate are developed to prevent the fresh concrete from being frozen at early ages In this study, the experiments are carried out on several kinds of agent for enduring cold climate to present their performance. According to experimental results, most kinds of agent for enduring cold climate show the satisfactory properties of decreasing the freezing point and acceleating the cement hydration in low temperature environment, which is available for placing concrete in spite of cold weather.

  • PDF

Calcium Phosphate Cement Reinforced with Chopped High Performance Polyethylene Fiber.

  • Hirayama, S.;Ikemi, T.;Tsujimoto, Y.;Yamazaki, M.;Chow, L.C.;Takagi, S.;Antonucci, J.M.
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.567.1-567
    • /
    • 2001
  • A self-setting calcium phosphate cement (CPC), consisting of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCP A), reacts with water and hardens fast (30 min) to form hydroxyapatite (HA) under physiological conditions as the final product. Although this CPC is finding increasing use as a biomaterial, it is presently limited to low stress bearing applications because of its relatively low strength and highly brittle nature. Recently the mechanical properties of CPC reinforced with chopped carbon fiber have been reported.

  • PDF

Thermal Crack Control of Massive Foundation Mat of Office-tel Using Thermal Analysis (오피스텔 대형 기초매트의 온도해석을 통한 온도균열제어)

  • 김태홍;하재담;김동석;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1181-1186
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as biers, thick walls, box type walls, mat-slab of nuclear reactor buildings, dams or foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which considers steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis considering season. Secondly it shows the application of the cracks control technique like block placement.