• 제목/요약/키워드: low carbon building

검색결과 189건 처리시간 0.03초

소규모 업무용 건물의 외피 열성능에 따른 건축물 에너지효율등급 평가 연구 (Evaluation of the Energy Efficiency Rating in small office building according to the Thermal Performance of Building Envelope)

  • 김상아;홍원화;박효순
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.65-70
    • /
    • 2012
  • Each country has implemented various environmental policies to prevent natural disasters and destruction of ecosystem caused by global wanning. The republic of Korea also was performed building energy efficiency rating certification system as part of paradigm of 'Low carbon green growth' since 2010. However, the status on the building energy efficiency rating certification system has not been analyzed. In this study, We analyzed the elements affecting the energy efficiency of small office buildings focusing the status and certification cases of the building energy efficiency rating system. As a result, it is judged that thermal performance contribution of the building envelope is not high in the buildings certificated the first grade of the building energy efficiency rating system.

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

IFC 데이터의 건물에너지 성능평가를 위한 공간경계정보 호환성 향상 연구 (A Study on the Space Boundary Information Interoperability Improvement of IFC Data for Building Energy Performance Assessment)

  • 최중식;김인한
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.129-137
    • /
    • 2014
  • Due to the increase of carbon dioxide and building regulations, BIM is considered a way of low-carbon and eco-friendly building development for its many advantages. The advantages can be maximized with Open BIM since it can produce optimal results for various purposes of energy performance assessment. However there are some problems in data interoperability in the process of Open-BIM based energy performance assessment. To solve such problems, this study focuses on space boundary information interoperability between IFC of Open BIM and IDF format of Energy Plus known as the most accurate and diverse energy performance assessment. The study analyzes the analogous study then figures out the problems of IFC based energy performance analysis, and suggests the way of interoperability. Finally, the development of automation program makes this way much more effective. The study of IFC data interoperability is useful for improving the reliability of Open-BIM based energy assessment.

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • 제16권1호
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

광명역 고속철도 역사를 활용한 1.5MW급 태양광발전시스템 설계 연구 (A Study on Design of 1.5MW Photovoltaic Power Generation System using Gwangmyeong Railway Station Building)

  • 유복종;박찬배;이주
    • 한국철도학회논문집
    • /
    • 제19권5호
    • /
    • pp.592-599
    • /
    • 2016
  • 프랑스 파리에서 2015년 12월 개최된 제21차 기후변화협약 당사국총회(COP21)는 신기후체제 합의문인 "파리 협정"을 채택하였다. 이는 2020년 만료 예정인 교토의정서를 대체하는 것으로 모든 국가가 전지구적인 기후변화대응에 참여하는 것으로 국제사회는 공동의 장기 목표로 산업화 이전 대비 지구 평균 기온 상승을 $2^{\circ}C$ 보다 상당히 낮은 수준으로 유지하고 온도 상승을 $1.5^{\circ}C$ 이하로 제한하기 위한 노력을 추구하여야 하며, 모든 국가는 장기 저탄소 개발 전략을 마련하여 2020년까지 제출하는 것을 요청하고 있다. 철도교통분야에서는 저탄소화에 대한 연구를 활발히 지속적으로 진행하고 있다. 본 논문에서는 국내 고속철도 역사 중 최대 건축규모이며 2014년 기준 여객수송인원 약 7백만명을 담당하는 광명역 역사 지붕을 활용한 1.5MW급 태양광 발전시스템을 설계를 위한 연구를 다룬다. 이를 위해 최적의 태양광발전시스템 설비를 구성한 후 PVsyst소프트웨어를 활용하여 연간 예상 발전량을 산출하고 배전계통 연계시에 예상 수익을 산출하여 철도역사의 태양광발전시스템 도입에 따른 저탄소 에너지화에 대한 기여도를 분석하고자 한다.

Finite element modeling of RC columns made of inferior concrete mix strengthened with CFRP sheets

  • Khaled A. Alawi, Al-Sodani;Muhammad Kalimur ,Rahman;Mohammed A., Al-Osta;Omar S. Baghabra, Al-Amoudi
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.403-417
    • /
    • 2022
  • Reinforced concrete (RC) structures with low-strength RC columns are rampant in several countries, especially those constructed during the early 1960s and 1970s. The weakness of these structures due to overloading or some natural disasters such as earthquakes and building age effects are some of the main reasons to collapse, particularly with the scarcity of data on the impact of aspect ratio and corner radius on the confinement effectiveness. Hence, it is crucial to investigate if these columns (with different aspect ratios) can be made safe by strengthening them with carbon fiber-reinforced polymers (CFRP) sheets. Therefore, experimental and numerical studies of CFRP-strengthened low-strength reinforced concrete short rectangular, square, and circular columns were studied. In this investigation, a total of 6 columns divided into three sets were evaluated. The first set had two circular cross-sectional columns, the second set had two square cross-section columns, and the third set has two rectangular cross-section columns. Furthermore, FEM validation has been conducted for some of the experimental results obtained from the literature. The experimental results revealed that the confinement equations for RC columns as per both CSA and ACI codes could give incorrect results for low-strength concrete. The control specimen (unstrengthened ones) displayed that both ACI and CSA equations overestimate the ultimate strength of low-strength RC columns by order of extent. For strengthened columns with CFRP, the code equations of CSA and ACI code overestimate the maximum strength by around 6 to 13% and 23 to 29%, respectively, depending on the cross-section of the column (i.e., square, rectangular, or circular). Results of finite element models (FEMs) showed that increasing the layer number of new commonly CFRP type (B) from one to 3 for circular columns can increase the column's ultimate loads by around eight times compared to unjacketed columns. However, in the case of strengthened square and rectangular columns with CFRP, the increase of the ultimate loads of columns can reach up to six times and two times, respectively.

탄소중립을 위한 주거단지에서의 에너지 전환 동향 (Energy Transition Trend in Residential Complexes for Carbon Neutrality)

  • 이태구;한영해
    • 한국농촌건축학회논문집
    • /
    • 제26권2호
    • /
    • pp.1-8
    • /
    • 2024
  • Carbon neutrality refers to a state in which there is no global increase in CO2 emissions due to human activities. In Korea, for carbon neutrality, green remodeling of existing buildings and customized support tasks for zero energy in new buildings are presented. Germany is showing fundamental changes in energy supply, such as applying renewable energy and higher energy efficiency from nuclear and fossil fuels, which were the existing energy sources. In this study, how Germany establishes policies for carbon neutrality at each state level and the cases applied to increase the energy efficiency of the actually applied residential complexes are analyzed based on this. As a result of the case complex analysis, it was found that the construction direction was being promoted as a zero-energy complex or a carbon-neutral complex by gradually reducing the energy demand in buildings and supplying additional energy with new and renewable energy in the low-energy building distribution in the 1990s. In Germany's ecological complex, energy standards have been strengthened from low-energy architecture to plus-energy architecture over time, and annual heating energy consumption standards and heat transmittance rates for each structure have been achieved at a higher level. The results of this analysis will serve as basic data and derivation of applicable items when planning residential complex development and remodeling of existing buildings for the domestic carbon-neutral goal in the future.

건물군 조건이 도시 열환경에 미치는 영향에 관한 정량적 검토 (Quantitative Study on the Effect of the Building Composition on the Urban Thermal Environment)

  • 여인애;카마타요코;이정재;윤성환
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.180-183
    • /
    • 2009
  • In this study, Urban Climate Simulation was performed by 3-Dimensional Urban Canopy Model. The characteristics of urban climate was analyzed combining artificial land coverage, building size, heat production from the air conditioning and topographic conditions as physical variables which affects urban climate characteristics. The results are as follows. (1)The aspects of the urban climatal change is derived to be related to the combination of the building coverage ratio, building height and shading area. (2)Whole heat generation was influenced by the convective sensible heat at the lower building height and by the artificial heat generation at the higher one over 20-story building influence to some extent of the building coverage ratio. The effect of the altitude is not more considerable than the other variables as below $1^{\circ}C$ of the air temperature.

  • PDF

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

레디믹스트 콘크리트의 환경성적표지 현황 및 특성 분석 (Analysis of the Present Status and Characteristics of Environmental Product Declaration of Ready-mixed Concrete)

  • 김낙현;김광현;박원준;노승준
    • 한국건축시공학회지
    • /
    • 제22권2호
    • /
    • pp.137-148
    • /
    • 2022
  • 본 연구는 레디믹스트 콘크리트의 환경성적표지 현황 조사와 이를 통한 레디믹스트 콘크리트 규격, 생애주기, 권역별 탄소배출량 특성 분석을 목적으로 한다. 이를 위해 콘크리트 산업의 탄소배출량 산정이 요구되고 있는 관련 인증제도를 분석하고, 레디믹스트 콘크리트 제품의 탄소배출량 현황분석을 위해 전과정평가 기법에 기반한 EPD 인증을 받은 제품군을 대상으로 하여 레디믹스트 콘크리트의 활성화 정도를 분석하였다. 또한 레디믹스트 콘크리트 제품의 생애주기별 탄소배출량 분석, 규격별 탄소배출량 분석, 권역별 탄소배출량 분석을 수행하여 각 특성에 따른 탄소배출량 추이를 검토하였다. 분석결과 생애주기별 탄소배출량은 제조전단계가 99% 수준을 나타냈으며, 18MPa에서 40MPa로 증가할수록 탄소배출량도 증가하는 추세를 보였다. 단, 동일 규격이라고 하더라도 수도권의 탄소배출량이 남부지역 대비 높은 탄소배출량을 나타냈다.