• 제목/요약/키워드: low buildings

검색결과 1,067건 처리시간 0.025초

Wind Environment Assessment around High-Rise Buildings through Wind Tunnel Test and Computational Fluid Dynamics

  • Min-Woo Park;Byung-Hee Nam;Ki-Pyo You;Jang-Youl You
    • 국제초고층학회논문집
    • /
    • 제11권4호
    • /
    • pp.321-329
    • /
    • 2022
  • High-rise buildings constructed adjacent to low-rise structures experience frequent damage caused by the associated strong wind. This study aimed to implement a standard evaluation of the wind environment and airflow characteristics around high-rise apartment blocks using wind tunnel tests (WTT) and computational fluid dynamics (CFD) simulations. The correlation coefficient between the CFD and wind tunnel results ranged between 0.6-0.8. Correlations below 0.8 were due to differences in the wake flow area range generated behind the target building according to wind direction angle and the effect of the surrounding buildings. In addition, a difference was observed between the average velocity ratio of the wake flow wind measured by the WTT and by the CFD analysis. The wind velocity values of the CFD analysis were therefore compensated, and, consequently, the correlations for most wind angles increased.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • 제12권2호
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

Guided wave formation in coal mines and associated effects to buildings

  • Uyar, Guzin G.;Babayigit, Ezel
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.923-937
    • /
    • 2016
  • The common prospect in diminishing mine-blast vibration is decreasing vibration with increasing distance. This paper indicates that, contrary to the general expectancy, vibration waves change their forms when they are travelling through the low velocity layer like coal and so-called guided waves moving the vibration waves to longer distances without decreasing their amplitudes. The reason for this unexpected vibration increase is the formation of guided waves in the coal bed which has low density and low seismic velocity with respect to the neighboring layers. The amplitudes of these guided waves, that are capable of traveling long distances depending on the seam thickness, are several times higher than that of the usual vibration waves. This phenomenon can many complaints from the residential areas very far away from the blasting sites. Thus, this unexpected behavior of the coal beds in the surface coal mines should also be considered in vibration minimization studies. This study developed a model to predict the effects of guided waves on the propagation ways of blast-induced vibrations. Therefore, vibration mitigation studies considering the nearby buildings can be focused on these target places.

스마트 최상층 면진시스템의 중약진지역 적용성 평가 (Investigation of Adaptability of Smart Top-Story Isolation System to Structures in Regions of Low-to-Moderate Seismicity)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제12권4호
    • /
    • pp.71-80
    • /
    • 2012
  • Because a smart isolation system cannot be used as a base isolation system for tall buildings, top-story or mid-story isolation systems are required. In this study, adaptability of a smart top-story isolation system for reduction of seismic responses of tall buildings in regions of low-to-moderate seismicity has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions in comparison with a passive top-story isolation system.

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • 국제초고층학회논문집
    • /
    • 제2권2호
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

Dynamic Thermal Model of a Lighting System and its Thermal Influence within a Low Energy Building

  • Park, Herie;Lim, Dong-Young;Choi, Eun-Hyeok;Lee, Kwang-Sik
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.9-15
    • /
    • 2014
  • This paper focuses on the heat gain of a lighting system, one of the most-used appliances in buildings, and its thermal effect within a low energy building. In this study, a dynamic thermal model of a lighting system is first established based on the first principle of thermodynamics. Then, thermal parameters of this model are estimated by experiments and an optimization process. Afterward, the obtained model of the system is validated by comparing simulation results to experimental one. Finally it is integrated into a low energy building model in order to quantify its thermal influence within a low energy building. As a result, heat flux of the lighting system, indoor temperature and heating energy demands of the building are obtained and compared with the results obtained by the conventional model of a lighting system. This paper helps to understand thermal dynamics of a lighting system and to further apply lighting systems for energy management of low energy buildings.

저층건축물의 구조골조 설계용 풍압계수 및 풍하중 평가 약산식의 제안 (A Proposal of the Wind Pressure Coefficient and Simplified Wind Load Estimating Formula for the Design of Structural Frames of the Low-Rise Buildings)

  • 박재형;정영배;하영철
    • 한국강구조학회 논문집
    • /
    • 제21권3호
    • /
    • pp.289-299
    • /
    • 2009
  • 본 연구는 각주형 저층건축물에 작용하는 지점별 풍압을 다점동시측정시스템을 이용하여 건물 폭과 깊이변화에 따른 평균풍압분포 특성에 대한 기초적인 결과를 정리한 것이다. 본 실험에서는 건물의 폭과 깊이를 변화시킨 5개의 각주형 풍압실험모형이 사용되었으며, 풍동실험은 금오공과대학교 소재 토출식 경계층풍동에서 실시하였다. 실험결과는 저층건축물의 건물 폭 및 깊이의 변화에 따른 저층건축물의 평균풍압분포 변화경향을 건축물의 풍상면, 풍측면 및 풍하면 중심으로 특성을 분석하였다. 실험결과를 토대로 저층건축물의 구조골조 설계용 풍하중을 합리적으로 산정하기 위해 필요한 새로운 풍압계수 및 간략한 약산식을 제시하였다.

산업단지 내 저층과 고층 아파트의 외기 중 호흡성분진과 일산화탄소 수준 (Ambient Levels of CO and PM10 at Low- and High-floor Apartments in Industrial Complexes)

  • 조완근;이준엽
    • 한국환경과학회지
    • /
    • 제15권8호
    • /
    • pp.719-725
    • /
    • 2006
  • Since low-floor apartments ate vertically closer to patting lots and roadways, it is hypothesized that residents in low-floor apartments may be exposed to elevated ambient levels of motet vehicle emissions compared to residents in high-floor apartments. The present study examined this hypothesis by measuring two motor vehicle source-related pollutants(CO and PM10) in ambient air of high-rise apartment buildings within the boundary of industrial complexes according to atmospheric stability The ambient air concentrations of CO and PM10 were higher for low-floor apartments than for high-floor apartments, regardless of atmospheric stability, The median concentration ratio of the low-floor air to high-floor alt ranged from 1.3 to 2.0, depending upon atmospheric stabilities, seasons and compounds. Moreover, the CO and PM10 concentrations were significantly higher in the winter and in the summer, regardless of the Hoot height. Atmospheric stability also was suggested to be important for the residents' exposure of high-rise apartment buildings to both CO and PM10. The median ratios of surface inversion air to non-surface inversion air ranged from 1.2 to 1.7 and from 1.0 to 1.6 lot PM10 and CO, respectively, depending upon seasons. Conclusively, these parameters(apartment floor height, season, and atmospheric stability) should be considered when evaluating the exposure of residents, living in high-rise apartment buildings, to CO and PM10. Meanwhile, the median PMl0 outdoor concentrations were close to or higher than the Korean annual standards for PM10, and the maximum PM10 concentrations substantially exceeded the Korean PM10 standard, thus suggesting the need for a management strategy for ambient PM 10. Neither the median nor the maximum outdoor CO concentrations, however, were higher than the Korean CO standard.

실측을 통한 건물의 손상 전.후 진동특성 평가 (Vibration Characteristics of a Building Before and After Damage by Actual Measurement)

  • 윤성원;박용
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.445-453
    • /
    • 2010
  • 최근 추진되는 노후화된 저층형 건물의 리모델링의 대부분이 국내기준인 KBC2005의 내진성능에 미치지 못하는 실정이다. 이에 보강을 통한 신축건물과 견줄 수 있는 성능확보에 대한 연구가 많이 이루어지고 있으나, 실제건물의 진동계측을 통해 보강효과를 검증하는 연구는 상대적으로 매우 미흡한 실정이다. 또한 실물 구조물에 대하여 파괴 직전까지의 큰 손상 후에 진동계측을 통한 동적특성에 대한 연구도 매우 미약한 실정이다. 따라서 본 연구는 3층 철근콘크리트조 건물에 강판벽을 보강한 후 엑츄에이터로 하중을 주어 건물에 손상을 준 후에 손상 전 후의 진동 계측을 통하여 동적특성을 파악하였다. 진동계측을 통하여 보강효과를 확인할 수 있었다. 또한 80mm의 수평변위를 준 결과 구조물의 파괴 직전 손상 전 후에 장변과 단변의 고유진동수는 각각 20.85%, 5.77% 감소하였고, 감쇠율은 각각 53.9%, 23.15% 감소하였다.