• Title/Summary/Keyword: low VSWR

Search Result 101, Processing Time 0.025 seconds

Hybrid Antenna for the All Band Mobile Phone Service Including LTE (LTE를 포함한 전 휴대폰 서비스 대역 하이브리드 안테나)

  • Lim, Seung-Jin;Son, Tae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.737-743
    • /
    • 2011
  • In this paper, we designed and implemented a Monopole+IFA(Inverted F Antenna) hybrid antenna using the coupled feeding structure for the all band mobile phone. Studied antenna has wide band characteristics by the simultaneous operation both monopole and IFA under the coupled feeding structure. An antenna has designed PCB embedded type without antenna carrier component for the low in cost. Implemented antenna has within 2.5:1 for VSWR under LTE/CDMA/GSM900/DCS/USPCS/WCDMA/WiBro/WiFi in all band for the mobile services Measured average gains and efficiencies were -3.98~-0.09 dBi and 40.03~97.99 % for the LTE, CDMA, GSM900 band, and -3.90~-1.01 dBi and 40.70~79.31 % for the DCS, USPCS, WCDMA, WiBro, WiFi band. It's shown that studied antenna can be applied to all band mobile phone antenna including LTE.

Simple Miniaturization Method of a Microstrip Patch Antenna (마이크로스트립 패치 안테나의 효율적 소형화 기법)

  • 이병제;이호준;강기조;김남영;이종철;김종환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.920-928
    • /
    • 2000
  • In this paper, using newly proposed size reduction technique, the aperture coupled microstrip patch antenna for a repeater system in a mobile communication cellular band (824~849 MHz) is developed with a wide bandwidth, small size, light weight, and low cost. The resonant frequency of microstrip antennas is related to the electric field distribution of the radiating patch. The field strength of $TM_{01}$ mode of a rectangular patch antenna is strongest at each of the extremities of the radiating patch, but negligible at center. Therefore, the size of a patch antenna can be effectively minimized by inserting the narrow rectangular dielectric into just under the edges of the resonant Patch. This Paper also proposes the bandwidth improvement technique by using under-coupling technique with a tuning stub. The VSWR is less than 1.5 : 1 for the whole cellular band. The simulation tool was HFSS, Agilent Technologies, Inc.

  • PDF

Design of Ultra-Wide Band Antenna with Compact MCR Structure for BW Enhancement (대역폭 향상을 위한 소형 MCR 구조를 갖는 Ultra-Wide Band 안테나 설계)

  • Nadeem, Iram;Kim, Young-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.798-805
    • /
    • 2017
  • This paper presents a low profile multi circular ring with different radius, patch antenna with modified feed line and slotted ground. The size of the antenna is $15{\times}12mm^2$, having electrical dimensions of $0.14{\lambda}{\times}0.12{\lambda}$ (at lower initial frequency) and footprints of $180mm^2$. The proposed antenna covers 3.1 to 12.3 GHz, reflection coefficient up to -38 dB with Bandwidth ratio of 4.13:1 and fractional Bandwidth of 122%. Bandwidth dimension ratio has been calculated (which is 6246) as a proof for compact size. Thin slots introduced on the feed line provide good impedance matching for whole frequency band. Numerical simulations of the proposed antenna are reported in terms of reflection coefficient ${\leq}-10dB$, vswr 2:1, radiation pattern and group delay (ns). The proposed antenna has advantage of very small size along with better impedance match that provides a practical approach to realize it for BW enhancement and UWB applications.

Design of a Circular Polarization Microstrip $12\times12$ Series-Parallel Array Antenna at 10 GHz (원형 편파 마이크로스트립 $12\times12$ 직-병렬 배열 안테나 설계)

  • 이영주;정명숙;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.26-36
    • /
    • 2000
  • A circularly polarized $12\times12$ array with application in the satellite communications is designed at 10 GHz. The radiator is an aperture-coupled ring patch, which is suitable of large arrays. The element spacing of the array is chosen to be $0.7\lambda_0$to maintain the main beam in the broadside direction. The array is a sequential array constructed on a series-parallel feed network to obtain high gain and low axial ratio. Measurement results for the array, acquired by experiments in the compact range of POSTECH, showed a directivity of 27.88 dB, a high gain of 25.55 dB, an efficiency of 60%, an axial ratio of 1.74 dB, and a side-lobe level of -13 dB. The bandwidth of the array was 43% when the VSWR was 2, and the bandwidth of the axial ratio was 16%.

  • PDF

Design of Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.71-72
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "${\Gamma}$"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, and low cross-polarization level of < -20 dB.

  • PDF

The Wide-band and High-gain Strip Patch Antenna coupled with a H-shaped Aperture (H모양 개구면에 스트립 급전된 광대역 및 고이득 패치 안테나)

  • Shin, Ho-Sub;Kim, Nam
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.4
    • /
    • pp.27-37
    • /
    • 2001
  • The design, fabrication, and an experimental implementation of the strip patch antenna coupled with a H-shaped aperture arc presented in this paper. The proposed antenna has the wide bandwidth, high gain, and low cross-polarization levels. We measured the VSWR, smith chart impedance characteristic, co/cross polarization pattern, gain, and so on. The measured bandwidth of this antenna is 47.1 %. To reduce the back lobe and increase the gain, when the reflector is used, cross polarization level is below -18.2dB at E-plane and below 25.7 dB at H -plane. The maximum gain at 2.05 GHz is also 10.4 dBi and the 3 dB gain bandwidth with center frequency at 2.17 GHz is 24 %, which is the wide bandwidth. This antenna can find applications in mobile communication, wireless LAN, RF communication system, and so on.

  • PDF

Electrically Small Square Loop Antenna with SRR (Split Ring Resonator) Cover Structure (SRR (Split Ring Resonator) 덮개 구조를 갖는 전기적 소형 정사각형 루프 안테나)

  • Kim, Yong-Jin;Kim, Jung-Han;Lee, Hong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.52-58
    • /
    • 2008
  • In this paper, electrically small square loop antenna with SRR (Split Ring Resonator) cover structure is built and tested. The proposed antenna has very small size, ka = 0.34 by Chu limit. The experimental result shows that the resonant frequency and impedance bandwidth($VSWR{\leq}2$) are 906MHz and 5.8MHz (901.7 - 907.5MHz), respectively. The proposed antenna is matched and designed by equivalent circuit model. The proposed antenna is fabricated simple structure without additional matching network and printed on a Teflon substrate without ground plane. Therefore, it has advantages of low cost, small size, and light weight and will be applied to wireless communication systems where small antennas are required.

Antenna Design of Mobile Frequency bands for Vehicular Application (휴대 단말 주파수 대역에서 동작하는 차량용 안테나 설계)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.337-341
    • /
    • 2011
  • This paper presents the design of a novel integrated mobile antenna for vehicles. The proposed antenna fabricated on a low cost easily available FR4 substrate, which effectively covers both dual band operation. The proposed mobile antenna is a modified G-type patch antenna that can operate in various frequency bands, GSM (880~960 MHz), AMPS (824~894MHz), DCS (1710~1880MHz), PCS (1850~1990MHz), UMTS (1920~2170). Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed mobile antenna agree that of the simulation results. It was validated that the configuration can meet the demands of Mobile frequency bands and effectively enhanced the impedance bandwidth to 36.46% for the lower band and 27.84% for the upper band. This paper also presents and discusses the 3D radiation patterns and gains according to the results of the experiment.

Design of Multi-band Antenna Using Metal Frame Coupling for Wearable Device Application (메탈 프레임 커플링을 이용한 웨어러블 디바이스용 다중대역 안테나 설계)

  • Lee, Kyunghak;Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.522-528
    • /
    • 2017
  • In this paper, we propose a multi-band antenna for wearable devices using metal frame coupling. The proposed antenna has a $45mm{\times}35mm$ antenna using metal frame and a ground dual coupling structure. The proposed multi-band antenna in this paper is optimized for small devices such as wearable devices. By using the metal frame as a part of the antenna, the volume of the antenna is reduced and satisfies under VSWR 3:1 impedance bandwidth of 70 MHz (870 ~ 940 MHz) in low frequency band, 280 MHz (1600 ~ 1880 MHz) and 280 MHz (1900 ~ 2170 MHz) in high frequency band. It also verified the applicability of wearable devices by measuring wireless performance indicators such as TRP/TIS.

Compact Slot Antenna for 5.8 GHz RFID (5.8 GHz RFID용 소형 슬롯 안테나)

  • Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.12
    • /
    • pp.2763-2768
    • /
    • 2013
  • In this paper, a design method for a compact slot antenna for 5.8 GHz RFID band (5.725-5.875 GHz) is studied. The proposed slot antenna is size-reduced by bending both ends of the straight slot in "I"-shape, and a rectangular feed patch is located inside the slot. The effects of slot length, location of feed patch, and width and length of feed patch on the antenna performance are examined. A prototype antenna with optimized parameters for 5.8 GHz band is fabricated on an FR4 substrate and tested experimentally to verify the results of this study. The experimental results show that the frequency band for a VSWR < 3 ranges 5.72-6.13 GHz (bandwidth 410 MHz), and it corresponds fairly well with the simulated band 5.64-5.97 GHz (bandwidth 330 MHz). The fabricated antenna shows good radiation performance such as maximum power density in both directions normal to the slot plane, low cross-polarization level of < -20 dB, and realized gain > 0 dBi within the frequency band.