• Title/Summary/Keyword: loss variation

Search Result 1,226, Processing Time 0.027 seconds

Characteristics of Noise Attenuation with the Variation of Flow Condition and Hole Shape of Perforated Intruding Tues in Muffler (유동조건과 내부관 구명형상의 변화에 따른 소음기의 소음저감 특성)

  • Jung, Jin-Nyon;Kim, Won-Jin;Cho, Bum-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.87-93
    • /
    • 1999
  • To propose a useful modelling method for an actual muffler, the noise attenuation effects of muffler was investigated according to the flow condition and the hole shape of tubes. In this work, the finite element method was used to calculate the transmission loss of muffler, The noise attenuation characteristics of four different types of muffler in the hole shape of tubes were compared mutually to find a more simple equivalent model. Analytical results showed that the overall value of transmission loss increases and the peaks of transmission loss curve shift to the low frequency with mean flow for the given muffler, Also the noise attenuation characteristics of the equivalent model having the split holes is almost the same as those of the actual muffler having many circular holes.

  • PDF

Damping Properties of Plastic with Temperature Variation (온도변화에 따른 플라스틱의 진동감쇠특성)

  • Shin, Su-Hyun;Jung, Sung-Soo;Lee, Yong-Bong;Lee, Doo-Hee;Nam, Hyo-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.213-218
    • /
    • 2005
  • It is well known that the loss factor and Young's modulus are fundamental mechanical properties of materials. Recently, the use of complex plastics is increasing for vibration proof. In this study, we evaluated two mechanical values of polycarbonate and acrylonitrile butadiene styrene by using two different standard test methods of ASTM E 756 and ISO 6721. Because damping properties of material generally depend on temperature, test specimen‘s temperature were controlled in the temperature range between - $10^{\circ}C\;and\;60^{\circ}C$. The results shown that the loss factor of polycarbonate gradually increased as increasing temperature, while the Young's modulus decreased. However, the loss factor and the Young's modulus of acrylonitrile butadiene styrene are varied somewhat at $60^{\circ}C$.

Variation of Non-Point Source Pollution according to AMC Condition Using Probable Rainfall (확률강우량을 이용한 AMC 조건에 따른 비점원 오염량의 변화)

  • 안승섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.76-88
    • /
    • 2000
  • AGNPS model is applied in this study to analyze the changes of non-point source pollutant according to AMC condition using probable rainfall. Probable rainfall of H-dam area by Gumber's extreme value distribution is computed through frequency analysis for each return period. 35 coarse grids are subdivided into 134 find grids of finite differential network to analyze peak flow soil loss quantity and nutrients of study area and the modified CN estimation equation shows good result about rainfall events-peak flow relationship. And as the consequence of estimation of soil loss quantity for each rainfall event soil loss quantity shows 120%-170% of actual soil loss quantity Regression analysis for the observed and calculated values of flow T-P AMC has an important effect on nutrients concentration of outflow and it if found that the excessive fertilization under AMC III condition may cause eutrophication by nutrients because the range of increase of outflow concentration appears relatively high.

  • PDF

Multiresponse Optimization through a Loss Function Considering Process Parameter Fluctuation (공정변수의 변동을 고려한 손실함수를 통한 다중반응표면 최적화)

  • Kwon, Jun-Bum;Lee, Jong-Seok;Lee, Sang-Ho;Jun, Chi-Hyuck;Kim, Kwang-Jae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.2
    • /
    • pp.164-172
    • /
    • 2005
  • A loss function approach to a multiresponse problem is considered, when process parameters are regarded as random variables. The variation of each response may be amplified through so called propagation of error (POE), which is defined as the standard deviation of the transmitted variability in the response as a function of process parameters. The forms of POE for each response and for a pair of responses are proposed and they are reflected in our loss function approach to determine the optimal condition. The proposed method is illustrated using a polymer case. The result is compared with the case where parameter fluctuation is not considered.

Packet Loss Fair Scheduling Scheme for Real-Time Traffic in OFDMA Systems

  • Shin, Seok-Joo;Ryu, Byung-Han
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.391-396
    • /
    • 2004
  • In this paper, we propose a packet scheduling discipline called packet loss fair scheduling, in which the packet loss of each user from different real-time traffic is fairly distributed according to the quality of service requirements. We consider an orthogonal frequency division multiple access (OFDMA) system. The basic frame structure of the system is for the downlink in a cellular packet network, where the time axis is divided into a finite number of slots within a frame, and the frequency axis is segmented into subchannels that consist of multiple subcarriers. In addition, to compensate for fast and slow channel variation, we employ a link adaptation technique such as adaptive modulation and coding. From the simulation results, our proposed packet scheduling scheme can support QoS differentiations while guaranteeing short-term fairness as well as long-term fairness for various real-time traffic.

  • PDF

A Study on the Dielectric Properties of Epoxy Composites due to Temperature Variation (온도변화에 따른 에폭시 복합체의 유전특성에 관한 연구)

  • 김상걸;송봉철;정동회;이호식;이원재;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.148-151
    • /
    • 2000
  • In this paper, the dielectric properties of epoxy composites used for transformers are studied. The dielectric permittivity and loss of specimen are measured at the temperature range of 20[$^{\circ}C$]~150[$^{\circ}C$] about frequency 30[Hz], 1[kHZ] and 30[kHz] respectively from a series of experiments. Consequently, observed higher values of dielectric permittivity and loss in filled epoxy are attributed to Maxwell-Wagner Polarization effect. Also, glass transition temperature was shifted to higher temperature and value of dielectric permittivity and loss were decreased due to 2nd curing.

  • PDF

Characteristics of the silencer using resonator arrays with nonlinear impedance (비선형 임피던스를 고려한 공명기 배열 소음기의 특성)

  • Seo, Sang-Hyeon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.374-379
    • /
    • 2013
  • Helmholtz resonators have high transmission loss in a narrow band at the resonance frequency. The transmission loss characteristics of resonators at high sound pressure levels can change due to variations of the impedance as a result of nonlinear behavior. Different sound pressure levels are applied to each resonator when resonators were arranged along the path. Therefore, impedance variation due to incident sound pressure level should be considered in order to predict the transmission loss.

  • PDF

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

An Experimental Study for Drainage Capacity Increment at Surcharged Manholes with a 90° Bend (과부하 90° 접합맨홀의 배수능력 증대에 관한 실험 연구)

  • Kim, Jung Soo;Song, Ju Il;Yoon, Sei Eui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.447-458
    • /
    • 2009
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban areas. Therefore, it is necessary to analyze head loss at manholes, especially in case of surcharged flow. Hydraulic experiments were conducted with three cases. Case A is to test whether the shapes of the manholes influence head loss coefficients. Case B and C were proposed to further reduce head losses by improving the manhole hydraulic efficiency. In case B, the joining part of the pipe at both shapes of manholes is shifted from central part to side part. The test in case C is to check the average head loss coefficient by installing the side benching in square manhole, based on shifted joining part model. The average head loss coefficient for circular and square manhole on case A was 1.6. This did not show much difference of the head loss coefficients in spite of the discharge variation in this case. However, case B and C show large difference between head loss coefficients due to the strong oscillation of water surface and the horizontal swirl motion. The circular and square manholes in case B reduced the head loss by 30% and 6% than ones in case A, respectively. The average head loss coefficient for circular manhole in case B was 1.1. Case C reduced average loss coefficients of the square manhole in case A from 1.6 to 1.1. Accordingly, the circular manhole in case B and the square manhole in case C showed the effective way to reduce the head loss. These head loss coefficients could be available to apply to the urban sewer system with surcharged flow.

Estimation of Head Loss Coefficients at Surcharged Square Manhole Using Numerical Model (수치모형을 이용한 과부하 사각형 맨홀에서의 손실계수 산정)

  • Kim, Jung-Soo;Lim, Ga-Hui;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.143-150
    • /
    • 2011
  • Energy loss at manholes, often exceeding friction loss of pipes under surcharged flow, is considered as one of the major causes of inundation in urban area. Therefore, it is important to analyze the head losses at manholes, especially in case of surcharged flow. The stream characteristics were analyzed and head loss coefficients were estimated by using the computational fluid dynamics(CFD) model, FLUENT 6.3, at surcharged square manhole in this study. The CFD model was carefully assessed by comparing simulated results with the experimental ones. The study results indicate that there was good agreement between simulation model and experiment. The CFD model was proved to be capable of estimating the head loss coefficients at surcharged manholes. The head loss coefficients with variation of the ratio of manhole width(B) to inflow pipe diameter(d) and variation of the drop height at surcharged square manhole with a straight-path through were calculated using FLUENT 6.3. As the ratio of B/d increases, head loss coefficient increases. The depth and head loss coefficient at manhole were gradually increased when the drop height was more than 5cm. Therefore, the CFD model(Fluent 6.3) might be used as a tool to simulate the water depth, energy losses, and velocity distribution at surcharged square manhole.