• Title/Summary/Keyword: loss variation

Search Result 1,223, Processing Time 0.023 seconds

A Study on the Variation of Optical Fiber Splicing Loss due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Kim Young-Ho;Yoo Kang-Hee
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.105-110
    • /
    • 2006
  • The most sensitive part of the installed optical cable is the optical loss variation of the splicing point according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and variation. Through the bending test of optical fiber, rapid increase of optical loss was measured within the diameter of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

  • PDF

Bottom Loss Variation of Low-Frequency Sound Wave in the Yellow Sea (황해에서 저주파 음파의 해저손실 변동)

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The sound wave in the sea propagates under the effect of water depth, sound speed structure, sea surface roughness, bottom roughness, and acoustic properties of bottom sediment. In shallow water, the bottom sediments are distributed very variously with place and the sound speed structure varying with time and space. In order to investigate the seasonal propagation characteristics of low-frequency sound wave in the Yellow Sea, propagation experiments were conducted along a track in the middle part of the Yellow Sea in spring, summer, and autumn. In this paper we consider seasonal variations of the sound speed profile and propagation loss based on the measurement results. Also we quantitatively investigate variation of bottom loss by dividing the propagation loss into three components: spreading loss, absorption loss, and bottom loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn, and the propagation losses measured in autumn were smaller than the losses in spring. The spreading loss and the absorption loss did not show seasonal variations, but the bottom loss showed seasonal variations. So it was thought that the seasonal variation of the propagation loss was due to the seasonal change of the bottom loss and the seasonal variation of the bottom loss was due to the change of the sound speed profile by season.

Temperature effect on wireless impedance monitoring in tendon anchorage of prestressed concrete girder

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1159-1175
    • /
    • 2015
  • In this study, the effect of temperature variation on the wireless impedance monitoring is analyzed for the tendon-anchorage connection of the prestressed concrete girder. Firstly, three impedance features, which are peak frequency, root mean square deviation (RMSD) index, and correlation coefficient (CC) index, are selected to estimate the effects of temperature variation and prestress-loss on impedance signatures. Secondly, wireless impedance tests are performed on the tendon-anchorage connection for which a series of temperature variation and prestress-loss events are simulated. Thirdly, the effect of temperature variation on impedance signatures measured from the tendon-anchorage connection is estimated by the three impedance features. Finally, the effect of prestress-loss on impedance signatures is also estimated by the three impedance features. The relative effects of temperature variation and prestress-loss are comparatively examined.

A Study on the Optical Loss Variation of Optical Fiber Splicing Part due to Environment (광섬유 접속부의 환경 변화에 따른 손실변화 연구)

  • Yoo, Kang-Hee;Kim, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.349-357
    • /
    • 2007
  • The most sensitive part of the installed optical fiber fable is the optical loss variation of the splicing part according to the environmental changes. This paper presents the details of the experimental results of the external environmental changes on optical loss, such as bending, temperature variation, temperature variation after water osmosis and vibration. Through the bending test of optical fiber, rapid increase of optical loss was measured within the radius of 30mm. The result of optical loss variation within the temperature range of $-30^{\circ}C{\sim}60^{\circ}C$ is less than 0.02dB. It was confirmed that the maximum optical loss increased up to 0.2dB in case of water osmosis within the temperature range of $-40^{\circ}C{\sim}80^{\circ}C$. There is small optical loss variation of 0.01dB under the 1mm vibration test. The experimental results of this paper can be used as the reference data for the design of the optical fiber cable splicing enclosure to protect the optical loss variation due to environmental changes.

Loss Minimization Control of Interior Permanent Magnet Synchronous Motors Considering Self-Saturation and Cross-Saturation

  • Pairo, Hamidreza;Khanzade, Mohammad;Shoulaie, Abbas
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1099-1110
    • /
    • 2018
  • In this paper, a loss minimization control method for interior permanent magnet synchronous motors is presented with considering self-saturation and cross saturation. According to variation of the d-axis and q-axis inductances by different values of the d-axis and q-axis components of currents, it is necessary to consider self-saturation and cross saturation in the loss minimization control method. In addition, the iron loss resistance variation due to frequency variation is considered in the condition of loss minimization. Furthermore, the loss minimization control method is compared with maximum torque per ampere (MTPA), unity power factor (UPF) and $i_d=0$ control methods. Experimental results verify the performance and proper dynamic response of the loss minimization control method with considering self-saturation and cross saturation.

A Multivariate Process Capability Index using Expected Loss (기대손실을 이용한 다변량 공정능력지수)

  • Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.116-123
    • /
    • 2005
  • The traditional process capability indices Cp, Cpk, Cpm, $Cpm^+$ have been used to characterize process performance on the basis of univariate quality characteristics. Cp, Cpk consider the process variation, Cpm considers both the process variation and the process deviation from target and Cpm+ considers economic loss for the process deviation from target. In manufacturing industry, there is growing interest in quantitative measures of process variation under multivariate duality characteristics. The multivariate process capability index incorporates both the process variation and the process deviation from target or considers expected loss caused by the process deviation from target. This paper proposes multivariate capability index based on the expected loss derived from multivariate normal distribution.

Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.881-901
    • /
    • 2016
  • In this study, a method to compensate the effect of temperature variation on impedance responses which are used for prestress-loss monitoring in prestressed concrete (PSC) girders is presented. Firstly, an impedance-based technique using a mountable lead-zirconate-titanate (PZT) interface is presented for prestress-loss monitoring in the local tendon-anchorage member. Secondly, a cross-correlation-based algorithm to compensate the effect of temperature variation in the impedance signatures is outlined. Thirdly, lab-scale experiments are performed on a PSC girder instrumented with a mountable PZT interface at the tendon-anchorage. A series of temperature variation and prestress-loss events are simulated for the lab-scale PSC girder. Finally, the feasibility of the proposed method is experimentally verified for prestress-loss monitoring in the PSC girder under temperature-varying conditions and prestress-loss events.

A Study on the Peak Discharge and Soil Loss Variation due to the New Town Development - In the Case of Namak New Town Development Area - (신도시 개발에 따른 첨두유출량과 토양유실량 변화에 관한 연구 -목포시 남악 신도시 개발지를 대상으로-)

  • Woo, Chang-Ho;Cho, Nam-Yul
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.4
    • /
    • pp.271-280
    • /
    • 2002
  • The purpose of this study is to explore the hydrological impacts and soil loss variation due to the land use change of Namak New Town development area. The analysis of hydrological effects and soil loss variation has been carried out using GIS in this study. In order to estimate the peak runoff volume, the Rational Method which is the most popular technique to predict runoff amounts is used. To estimate the soil loss in the study area, Universal Soil Loss Equation(USLE), which is one of the most comprehensive and useful technique to predict soil erosion is adopted. The result of this study has shown that the peak runoff volume and the total soil loss increase according to the land use change. The peak runoff volume and the total soil loss have been increased about 2 times and about 48 times more than that of pre development. The increasing of the peak runoff volume can be effective erosion, flooding and so on. A careful city planning is the first essential step to minimize the environmental impacts and to construct the ecological city.

Optimal Replacement Policy of Degradation System with Loss Function (손실함수를 고려한 열화시스템의 최적교체정책)

  • 박종훈;이창훈
    • Journal of Applied Reliability
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2001
  • Replacement policy of a degradation system is investigated by incorporating the loss function. Loss function is defined by the deviation of the value of quality characteristic from its target value, which determines the loss cost. Cost function is comprised of the inspection cost, replacement cost and loss cost. Two cost minimization problems are formulated : 1)determination of an optimal inspection period given the state for the replacement and 2)determination of an optimal state for replacement under fixed inspection period. Simulation analysis is performed to observe the variation of total cost with respect to the variation of the parameters of loss function and inspection cost, respectively As a result, parameters of loss function are seen to be the most sensitive to the total cost. On the contrary, inspection cost is observed to be insensitive. This study can be applied to the replacement policy of a degradation system which has to produce the quality critical product.

  • PDF

Transient Heat Conduction Through the Ondol Floor and Beat toss to the Ground (온돌의 구들장과 땅바닥의 비정상 열전도 해석)

  • Bae, Soon-Hoon;Kim, Doo-Chun
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.1
    • /
    • pp.6-17
    • /
    • 1975
  • For a periodic variation of the flue gas temperature the heat conduction through the Ondol floor was analysized. Also the heat loss to the ground was estimated. The floor thermal capacity, as a function of the floor thickness, has strong influence on the time lag of the temperature variation. It is an important design parameter for intermittent heating. Even for the steady periodic variation, there was significant heat loss to the ground below the Ondol floor.

  • PDF